Solve for m
m=\frac{\sqrt{553}-23}{6}\approx 0.085992005
m=\frac{-\sqrt{553}-23}{6}\approx -7.752658672
Share
Copied to clipboard
3m^{2}+9-11=-23m
Subtract 11 from both sides.
3m^{2}-2=-23m
Subtract 11 from 9 to get -2.
3m^{2}-2+23m=0
Add 23m to both sides.
3m^{2}+23m-2=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
m=\frac{-23±\sqrt{23^{2}-4\times 3\left(-2\right)}}{2\times 3}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 3 for a, 23 for b, and -2 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
m=\frac{-23±\sqrt{529-4\times 3\left(-2\right)}}{2\times 3}
Square 23.
m=\frac{-23±\sqrt{529-12\left(-2\right)}}{2\times 3}
Multiply -4 times 3.
m=\frac{-23±\sqrt{529+24}}{2\times 3}
Multiply -12 times -2.
m=\frac{-23±\sqrt{553}}{2\times 3}
Add 529 to 24.
m=\frac{-23±\sqrt{553}}{6}
Multiply 2 times 3.
m=\frac{\sqrt{553}-23}{6}
Now solve the equation m=\frac{-23±\sqrt{553}}{6} when ± is plus. Add -23 to \sqrt{553}.
m=\frac{-\sqrt{553}-23}{6}
Now solve the equation m=\frac{-23±\sqrt{553}}{6} when ± is minus. Subtract \sqrt{553} from -23.
m=\frac{\sqrt{553}-23}{6} m=\frac{-\sqrt{553}-23}{6}
The equation is now solved.
3m^{2}+9+23m=11
Add 23m to both sides.
3m^{2}+23m=11-9
Subtract 9 from both sides.
3m^{2}+23m=2
Subtract 9 from 11 to get 2.
\frac{3m^{2}+23m}{3}=\frac{2}{3}
Divide both sides by 3.
m^{2}+\frac{23}{3}m=\frac{2}{3}
Dividing by 3 undoes the multiplication by 3.
m^{2}+\frac{23}{3}m+\left(\frac{23}{6}\right)^{2}=\frac{2}{3}+\left(\frac{23}{6}\right)^{2}
Divide \frac{23}{3}, the coefficient of the x term, by 2 to get \frac{23}{6}. Then add the square of \frac{23}{6} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
m^{2}+\frac{23}{3}m+\frac{529}{36}=\frac{2}{3}+\frac{529}{36}
Square \frac{23}{6} by squaring both the numerator and the denominator of the fraction.
m^{2}+\frac{23}{3}m+\frac{529}{36}=\frac{553}{36}
Add \frac{2}{3} to \frac{529}{36} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(m+\frac{23}{6}\right)^{2}=\frac{553}{36}
Factor m^{2}+\frac{23}{3}m+\frac{529}{36}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(m+\frac{23}{6}\right)^{2}}=\sqrt{\frac{553}{36}}
Take the square root of both sides of the equation.
m+\frac{23}{6}=\frac{\sqrt{553}}{6} m+\frac{23}{6}=-\frac{\sqrt{553}}{6}
Simplify.
m=\frac{\sqrt{553}-23}{6} m=\frac{-\sqrt{553}-23}{6}
Subtract \frac{23}{6} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}