Solve for m
m=\frac{2\sqrt{6}}{9}-\frac{2}{3}\approx -0.122335613
m=-\frac{2\sqrt{6}}{9}-\frac{2}{3}\approx -1.210997721
Share
Copied to clipboard
3m^{2}+4m+1=\frac{5}{9}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
3m^{2}+4m+1-\frac{5}{9}=\frac{5}{9}-\frac{5}{9}
Subtract \frac{5}{9} from both sides of the equation.
3m^{2}+4m+1-\frac{5}{9}=0
Subtracting \frac{5}{9} from itself leaves 0.
3m^{2}+4m+\frac{4}{9}=0
Subtract \frac{5}{9} from 1.
m=\frac{-4±\sqrt{4^{2}-4\times 3\times \frac{4}{9}}}{2\times 3}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 3 for a, 4 for b, and \frac{4}{9} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
m=\frac{-4±\sqrt{16-4\times 3\times \frac{4}{9}}}{2\times 3}
Square 4.
m=\frac{-4±\sqrt{16-12\times \frac{4}{9}}}{2\times 3}
Multiply -4 times 3.
m=\frac{-4±\sqrt{16-\frac{16}{3}}}{2\times 3}
Multiply -12 times \frac{4}{9}.
m=\frac{-4±\sqrt{\frac{32}{3}}}{2\times 3}
Add 16 to -\frac{16}{3}.
m=\frac{-4±\frac{4\sqrt{6}}{3}}{2\times 3}
Take the square root of \frac{32}{3}.
m=\frac{-4±\frac{4\sqrt{6}}{3}}{6}
Multiply 2 times 3.
m=\frac{\frac{4\sqrt{6}}{3}-4}{6}
Now solve the equation m=\frac{-4±\frac{4\sqrt{6}}{3}}{6} when ± is plus. Add -4 to \frac{4\sqrt{6}}{3}.
m=\frac{2\sqrt{6}}{9}-\frac{2}{3}
Divide -4+\frac{4\sqrt{6}}{3} by 6.
m=\frac{-\frac{4\sqrt{6}}{3}-4}{6}
Now solve the equation m=\frac{-4±\frac{4\sqrt{6}}{3}}{6} when ± is minus. Subtract \frac{4\sqrt{6}}{3} from -4.
m=-\frac{2\sqrt{6}}{9}-\frac{2}{3}
Divide -4-\frac{4\sqrt{6}}{3} by 6.
m=\frac{2\sqrt{6}}{9}-\frac{2}{3} m=-\frac{2\sqrt{6}}{9}-\frac{2}{3}
The equation is now solved.
3m^{2}+4m+1=\frac{5}{9}
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
3m^{2}+4m+1-1=\frac{5}{9}-1
Subtract 1 from both sides of the equation.
3m^{2}+4m=\frac{5}{9}-1
Subtracting 1 from itself leaves 0.
3m^{2}+4m=-\frac{4}{9}
Subtract 1 from \frac{5}{9}.
\frac{3m^{2}+4m}{3}=-\frac{\frac{4}{9}}{3}
Divide both sides by 3.
m^{2}+\frac{4}{3}m=-\frac{\frac{4}{9}}{3}
Dividing by 3 undoes the multiplication by 3.
m^{2}+\frac{4}{3}m=-\frac{4}{27}
Divide -\frac{4}{9} by 3.
m^{2}+\frac{4}{3}m+\left(\frac{2}{3}\right)^{2}=-\frac{4}{27}+\left(\frac{2}{3}\right)^{2}
Divide \frac{4}{3}, the coefficient of the x term, by 2 to get \frac{2}{3}. Then add the square of \frac{2}{3} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
m^{2}+\frac{4}{3}m+\frac{4}{9}=-\frac{4}{27}+\frac{4}{9}
Square \frac{2}{3} by squaring both the numerator and the denominator of the fraction.
m^{2}+\frac{4}{3}m+\frac{4}{9}=\frac{8}{27}
Add -\frac{4}{27} to \frac{4}{9} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(m+\frac{2}{3}\right)^{2}=\frac{8}{27}
Factor m^{2}+\frac{4}{3}m+\frac{4}{9}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(m+\frac{2}{3}\right)^{2}}=\sqrt{\frac{8}{27}}
Take the square root of both sides of the equation.
m+\frac{2}{3}=\frac{2\sqrt{6}}{9} m+\frac{2}{3}=-\frac{2\sqrt{6}}{9}
Simplify.
m=\frac{2\sqrt{6}}{9}-\frac{2}{3} m=-\frac{2\sqrt{6}}{9}-\frac{2}{3}
Subtract \frac{2}{3} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}