Solve for k
k=-\frac{2x+1}{\left(x-1\right)\left(3x+1\right)}
x\neq -\frac{1}{3}\text{ and }x\neq 1
Solve for x (complex solution)
\left\{\begin{matrix}x=\frac{\sqrt{\left(k-1\right)\left(4k-1\right)}+k-1}{3k}\text{; }x=\frac{-\sqrt{\left(k-1\right)\left(4k-1\right)}+k-1}{3k}\text{, }&k\neq 0\\x=-\frac{1}{2}\text{, }&k=0\end{matrix}\right.
Solve for x
\left\{\begin{matrix}x=\frac{\sqrt{\left(k-1\right)\left(4k-1\right)}+k-1}{3k}\text{; }x=\frac{-\sqrt{\left(k-1\right)\left(4k-1\right)}+k-1}{3k}\text{, }&k\geq 1\text{ or }\left(k\neq 0\text{ and }k\leq \frac{1}{4}\right)\\x=-\frac{1}{2}\text{, }&k=0\end{matrix}\right.
Graph
Share
Copied to clipboard
3kx^{2}-\left(2k-2\right)x+1-k=0
Add -3 and 1 to get -2.
3kx^{2}-\left(2kx-2x\right)+1-k=0
Use the distributive property to multiply 2k-2 by x.
3kx^{2}-2kx+2x+1-k=0
To find the opposite of 2kx-2x, find the opposite of each term.
3kx^{2}-2kx+1-k=-2x
Subtract 2x from both sides. Anything subtracted from zero gives its negation.
3kx^{2}-2kx-k=-2x-1
Subtract 1 from both sides.
\left(3x^{2}-2x-1\right)k=-2x-1
Combine all terms containing k.
\frac{\left(3x^{2}-2x-1\right)k}{3x^{2}-2x-1}=\frac{-2x-1}{3x^{2}-2x-1}
Divide both sides by 3x^{2}-2x-1.
k=\frac{-2x-1}{3x^{2}-2x-1}
Dividing by 3x^{2}-2x-1 undoes the multiplication by 3x^{2}-2x-1.
k=-\frac{2x+1}{\left(x-1\right)\left(3x+1\right)}
Divide -2x-1 by 3x^{2}-2x-1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}