Solve for k
k=\frac{5x}{3}-3
Solve for x
x=\frac{3\left(k+3\right)}{5}
Graph
Share
Copied to clipboard
3k=-9+5x
Add 5x to both sides.
3k=5x-9
The equation is in standard form.
\frac{3k}{3}=\frac{5x-9}{3}
Divide both sides by 3.
k=\frac{5x-9}{3}
Dividing by 3 undoes the multiplication by 3.
k=\frac{5x}{3}-3
Divide -9+5x by 3.
-5x=-9-3k
Subtract 3k from both sides.
-5x=-3k-9
The equation is in standard form.
\frac{-5x}{-5}=\frac{-3k-9}{-5}
Divide both sides by -5.
x=\frac{-3k-9}{-5}
Dividing by -5 undoes the multiplication by -5.
x=\frac{3k+9}{5}
Divide -9-3k by -5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}