Skip to main content
Solve for k
Tick mark Image

Similar Problems from Web Search

Share

6k^{2}-3k=2
Use the distributive property to multiply 3k by 2k-1.
6k^{2}-3k-2=0
Subtract 2 from both sides.
k=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\times 6\left(-2\right)}}{2\times 6}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 6 for a, -3 for b, and -2 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
k=\frac{-\left(-3\right)±\sqrt{9-4\times 6\left(-2\right)}}{2\times 6}
Square -3.
k=\frac{-\left(-3\right)±\sqrt{9-24\left(-2\right)}}{2\times 6}
Multiply -4 times 6.
k=\frac{-\left(-3\right)±\sqrt{9+48}}{2\times 6}
Multiply -24 times -2.
k=\frac{-\left(-3\right)±\sqrt{57}}{2\times 6}
Add 9 to 48.
k=\frac{3±\sqrt{57}}{2\times 6}
The opposite of -3 is 3.
k=\frac{3±\sqrt{57}}{12}
Multiply 2 times 6.
k=\frac{\sqrt{57}+3}{12}
Now solve the equation k=\frac{3±\sqrt{57}}{12} when ± is plus. Add 3 to \sqrt{57}.
k=\frac{\sqrt{57}}{12}+\frac{1}{4}
Divide 3+\sqrt{57} by 12.
k=\frac{3-\sqrt{57}}{12}
Now solve the equation k=\frac{3±\sqrt{57}}{12} when ± is minus. Subtract \sqrt{57} from 3.
k=-\frac{\sqrt{57}}{12}+\frac{1}{4}
Divide 3-\sqrt{57} by 12.
k=\frac{\sqrt{57}}{12}+\frac{1}{4} k=-\frac{\sqrt{57}}{12}+\frac{1}{4}
The equation is now solved.
6k^{2}-3k=2
Use the distributive property to multiply 3k by 2k-1.
\frac{6k^{2}-3k}{6}=\frac{2}{6}
Divide both sides by 6.
k^{2}+\left(-\frac{3}{6}\right)k=\frac{2}{6}
Dividing by 6 undoes the multiplication by 6.
k^{2}-\frac{1}{2}k=\frac{2}{6}
Reduce the fraction \frac{-3}{6} to lowest terms by extracting and canceling out 3.
k^{2}-\frac{1}{2}k=\frac{1}{3}
Reduce the fraction \frac{2}{6} to lowest terms by extracting and canceling out 2.
k^{2}-\frac{1}{2}k+\left(-\frac{1}{4}\right)^{2}=\frac{1}{3}+\left(-\frac{1}{4}\right)^{2}
Divide -\frac{1}{2}, the coefficient of the x term, by 2 to get -\frac{1}{4}. Then add the square of -\frac{1}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
k^{2}-\frac{1}{2}k+\frac{1}{16}=\frac{1}{3}+\frac{1}{16}
Square -\frac{1}{4} by squaring both the numerator and the denominator of the fraction.
k^{2}-\frac{1}{2}k+\frac{1}{16}=\frac{19}{48}
Add \frac{1}{3} to \frac{1}{16} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(k-\frac{1}{4}\right)^{2}=\frac{19}{48}
Factor k^{2}-\frac{1}{2}k+\frac{1}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(k-\frac{1}{4}\right)^{2}}=\sqrt{\frac{19}{48}}
Take the square root of both sides of the equation.
k-\frac{1}{4}=\frac{\sqrt{57}}{12} k-\frac{1}{4}=-\frac{\sqrt{57}}{12}
Simplify.
k=\frac{\sqrt{57}}{12}+\frac{1}{4} k=-\frac{\sqrt{57}}{12}+\frac{1}{4}
Add \frac{1}{4} to both sides of the equation.