Solve for h
h = -\frac{4}{3} = -1\frac{1}{3} \approx -1.333333333
Share
Copied to clipboard
3h=7\times \frac{2}{7}+7\left(-\frac{3}{7}\right)h-10
Use the distributive property to multiply 7 by \frac{2}{7}-\frac{3}{7}h.
3h=2+7\left(-\frac{3}{7}\right)h-10
Cancel out 7 and 7.
3h=2-3h-10
Cancel out 7 and 7.
3h=-8-3h
Subtract 10 from 2 to get -8.
3h+3h=-8
Add 3h to both sides.
6h=-8
Combine 3h and 3h to get 6h.
h=\frac{-8}{6}
Divide both sides by 6.
h=-\frac{4}{3}
Reduce the fraction \frac{-8}{6} to lowest terms by extracting and canceling out 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}