Solve for f
f=\frac{1}{27}\approx 0.037037037
f=0
Share
Copied to clipboard
f\left(3-81f\right)=0
Factor out f.
f=0 f=\frac{1}{27}
To find equation solutions, solve f=0 and 3-81f=0.
-81f^{2}+3f=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
f=\frac{-3±\sqrt{3^{2}}}{2\left(-81\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -81 for a, 3 for b, and 0 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
f=\frac{-3±3}{2\left(-81\right)}
Take the square root of 3^{2}.
f=\frac{-3±3}{-162}
Multiply 2 times -81.
f=\frac{0}{-162}
Now solve the equation f=\frac{-3±3}{-162} when ± is plus. Add -3 to 3.
f=0
Divide 0 by -162.
f=-\frac{6}{-162}
Now solve the equation f=\frac{-3±3}{-162} when ± is minus. Subtract 3 from -3.
f=\frac{1}{27}
Reduce the fraction \frac{-6}{-162} to lowest terms by extracting and canceling out 6.
f=0 f=\frac{1}{27}
The equation is now solved.
-81f^{2}+3f=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-81f^{2}+3f}{-81}=\frac{0}{-81}
Divide both sides by -81.
f^{2}+\frac{3}{-81}f=\frac{0}{-81}
Dividing by -81 undoes the multiplication by -81.
f^{2}-\frac{1}{27}f=\frac{0}{-81}
Reduce the fraction \frac{3}{-81} to lowest terms by extracting and canceling out 3.
f^{2}-\frac{1}{27}f=0
Divide 0 by -81.
f^{2}-\frac{1}{27}f+\left(-\frac{1}{54}\right)^{2}=\left(-\frac{1}{54}\right)^{2}
Divide -\frac{1}{27}, the coefficient of the x term, by 2 to get -\frac{1}{54}. Then add the square of -\frac{1}{54} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
f^{2}-\frac{1}{27}f+\frac{1}{2916}=\frac{1}{2916}
Square -\frac{1}{54} by squaring both the numerator and the denominator of the fraction.
\left(f-\frac{1}{54}\right)^{2}=\frac{1}{2916}
Factor f^{2}-\frac{1}{27}f+\frac{1}{2916}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(f-\frac{1}{54}\right)^{2}}=\sqrt{\frac{1}{2916}}
Take the square root of both sides of the equation.
f-\frac{1}{54}=\frac{1}{54} f-\frac{1}{54}=-\frac{1}{54}
Simplify.
f=\frac{1}{27} f=0
Add \frac{1}{54} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}