3 d k = \frac { 15 x } { 7 y }
Solve for d (complex solution)
\left\{\begin{matrix}d=\frac{5x}{7ky}\text{, }&y\neq 0\text{ and }k\neq 0\\d\in \mathrm{C}\text{, }&x=0\text{ and }k=0\text{ and }y\neq 0\end{matrix}\right.
Solve for k (complex solution)
\left\{\begin{matrix}k=\frac{5x}{7dy}\text{, }&y\neq 0\text{ and }d\neq 0\\k\in \mathrm{C}\text{, }&x=0\text{ and }d=0\text{ and }y\neq 0\end{matrix}\right.
Solve for d
\left\{\begin{matrix}d=\frac{5x}{7ky}\text{, }&y\neq 0\text{ and }k\neq 0\\d\in \mathrm{R}\text{, }&x=0\text{ and }k=0\text{ and }y\neq 0\end{matrix}\right.
Solve for k
\left\{\begin{matrix}k=\frac{5x}{7dy}\text{, }&y\neq 0\text{ and }d\neq 0\\k\in \mathrm{R}\text{, }&x=0\text{ and }d=0\text{ and }y\neq 0\end{matrix}\right.
Graph
Share
Copied to clipboard
3dk\times 7y=15x
Multiply both sides of the equation by 7y.
21dky=15x
Multiply 3 and 7 to get 21.
21kyd=15x
The equation is in standard form.
\frac{21kyd}{21ky}=\frac{15x}{21ky}
Divide both sides by 21ky.
d=\frac{15x}{21ky}
Dividing by 21ky undoes the multiplication by 21ky.
d=\frac{5x}{7ky}
Divide 15x by 21ky.
3dk\times 7y=15x
Multiply both sides of the equation by 7y.
21dky=15x
Multiply 3 and 7 to get 21.
21dyk=15x
The equation is in standard form.
\frac{21dyk}{21dy}=\frac{15x}{21dy}
Divide both sides by 21dy.
k=\frac{15x}{21dy}
Dividing by 21dy undoes the multiplication by 21dy.
k=\frac{5x}{7dy}
Divide 15x by 21dy.
3dk\times 7y=15x
Multiply both sides of the equation by 7y.
21dky=15x
Multiply 3 and 7 to get 21.
21kyd=15x
The equation is in standard form.
\frac{21kyd}{21ky}=\frac{15x}{21ky}
Divide both sides by 21ky.
d=\frac{15x}{21ky}
Dividing by 21ky undoes the multiplication by 21ky.
d=\frac{5x}{7ky}
Divide 15x by 21ky.
3dk\times 7y=15x
Multiply both sides of the equation by 7y.
21dky=15x
Multiply 3 and 7 to get 21.
21dyk=15x
The equation is in standard form.
\frac{21dyk}{21dy}=\frac{15x}{21dy}
Divide both sides by 21dy.
k=\frac{15x}{21dy}
Dividing by 21dy undoes the multiplication by 21dy.
k=\frac{5x}{7dy}
Divide 15x by 21dy.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}