Solve for b
\left\{\begin{matrix}\\b=\frac{5cx+3d}{4}\text{, }&\text{unconditionally}\\b\in \mathrm{R}\text{, }&d=0\end{matrix}\right.
Solve for c
\left\{\begin{matrix}c=\frac{4b-3d}{5x}\text{, }&x\neq 0\\c\in \mathrm{R}\text{, }&d=0\text{ or }\left(d=\frac{4b}{3}\text{ and }x=0\right)\end{matrix}\right.
Graph
Share
Copied to clipboard
3d^{3}=4d^{2}b-5d^{2}cx
Use the distributive property to multiply d^{2} by 4b-5cx.
4d^{2}b-5d^{2}cx=3d^{3}
Swap sides so that all variable terms are on the left hand side.
4d^{2}b=3d^{3}+5d^{2}cx
Add 5d^{2}cx to both sides.
4d^{2}b=5cxd^{2}+3d^{3}
The equation is in standard form.
\frac{4d^{2}b}{4d^{2}}=\frac{d^{2}\left(5cx+3d\right)}{4d^{2}}
Divide both sides by 4d^{2}.
b=\frac{d^{2}\left(5cx+3d\right)}{4d^{2}}
Dividing by 4d^{2} undoes the multiplication by 4d^{2}.
b=\frac{5cx+3d}{4}
Divide \left(3d+5cx\right)d^{2} by 4d^{2}.
3d^{3}=4d^{2}b-5d^{2}cx
Use the distributive property to multiply d^{2} by 4b-5cx.
4d^{2}b-5d^{2}cx=3d^{3}
Swap sides so that all variable terms are on the left hand side.
-5d^{2}cx=3d^{3}-4d^{2}b
Subtract 4d^{2}b from both sides.
\left(-5xd^{2}\right)c=3d^{3}-4bd^{2}
The equation is in standard form.
\frac{\left(-5xd^{2}\right)c}{-5xd^{2}}=\frac{\left(3d-4b\right)d^{2}}{-5xd^{2}}
Divide both sides by -5d^{2}x.
c=\frac{\left(3d-4b\right)d^{2}}{-5xd^{2}}
Dividing by -5d^{2}x undoes the multiplication by -5d^{2}x.
c=-\frac{3d-4b}{5x}
Divide \left(3d-4b\right)d^{2} by -5d^{2}x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}