Solve for d
d=\sqrt{101}-10\approx 0.049875621
d=-\sqrt{101}-10\approx -20.049875621
Share
Copied to clipboard
3d^{2}+60d=3
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
3d^{2}+60d-3=3-3
Subtract 3 from both sides of the equation.
3d^{2}+60d-3=0
Subtracting 3 from itself leaves 0.
d=\frac{-60±\sqrt{60^{2}-4\times 3\left(-3\right)}}{2\times 3}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 3 for a, 60 for b, and -3 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
d=\frac{-60±\sqrt{3600-4\times 3\left(-3\right)}}{2\times 3}
Square 60.
d=\frac{-60±\sqrt{3600-12\left(-3\right)}}{2\times 3}
Multiply -4 times 3.
d=\frac{-60±\sqrt{3600+36}}{2\times 3}
Multiply -12 times -3.
d=\frac{-60±\sqrt{3636}}{2\times 3}
Add 3600 to 36.
d=\frac{-60±6\sqrt{101}}{2\times 3}
Take the square root of 3636.
d=\frac{-60±6\sqrt{101}}{6}
Multiply 2 times 3.
d=\frac{6\sqrt{101}-60}{6}
Now solve the equation d=\frac{-60±6\sqrt{101}}{6} when ± is plus. Add -60 to 6\sqrt{101}.
d=\sqrt{101}-10
Divide -60+6\sqrt{101} by 6.
d=\frac{-6\sqrt{101}-60}{6}
Now solve the equation d=\frac{-60±6\sqrt{101}}{6} when ± is minus. Subtract 6\sqrt{101} from -60.
d=-\sqrt{101}-10
Divide -60-6\sqrt{101} by 6.
d=\sqrt{101}-10 d=-\sqrt{101}-10
The equation is now solved.
3d^{2}+60d=3
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{3d^{2}+60d}{3}=\frac{3}{3}
Divide both sides by 3.
d^{2}+\frac{60}{3}d=\frac{3}{3}
Dividing by 3 undoes the multiplication by 3.
d^{2}+20d=\frac{3}{3}
Divide 60 by 3.
d^{2}+20d=1
Divide 3 by 3.
d^{2}+20d+10^{2}=1+10^{2}
Divide 20, the coefficient of the x term, by 2 to get 10. Then add the square of 10 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
d^{2}+20d+100=1+100
Square 10.
d^{2}+20d+100=101
Add 1 to 100.
\left(d+10\right)^{2}=101
Factor d^{2}+20d+100. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(d+10\right)^{2}}=\sqrt{101}
Take the square root of both sides of the equation.
d+10=\sqrt{101} d+10=-\sqrt{101}
Simplify.
d=\sqrt{101}-10 d=-\sqrt{101}-10
Subtract 10 from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}