Solve for d
d=1
d=-1
Share
Copied to clipboard
8d^{2}=8
Combine 3d^{2} and 5d^{2} to get 8d^{2}.
8d^{2}-8=0
Subtract 8 from both sides.
d^{2}-1=0
Divide both sides by 8.
\left(d-1\right)\left(d+1\right)=0
Consider d^{2}-1. Rewrite d^{2}-1 as d^{2}-1^{2}. The difference of squares can be factored using the rule: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
d=1 d=-1
To find equation solutions, solve d-1=0 and d+1=0.
8d^{2}=8
Combine 3d^{2} and 5d^{2} to get 8d^{2}.
d^{2}=\frac{8}{8}
Divide both sides by 8.
d^{2}=1
Divide 8 by 8 to get 1.
d=1 d=-1
Take the square root of both sides of the equation.
8d^{2}=8
Combine 3d^{2} and 5d^{2} to get 8d^{2}.
8d^{2}-8=0
Subtract 8 from both sides.
d=\frac{0±\sqrt{0^{2}-4\times 8\left(-8\right)}}{2\times 8}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 8 for a, 0 for b, and -8 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
d=\frac{0±\sqrt{-4\times 8\left(-8\right)}}{2\times 8}
Square 0.
d=\frac{0±\sqrt{-32\left(-8\right)}}{2\times 8}
Multiply -4 times 8.
d=\frac{0±\sqrt{256}}{2\times 8}
Multiply -32 times -8.
d=\frac{0±16}{2\times 8}
Take the square root of 256.
d=\frac{0±16}{16}
Multiply 2 times 8.
d=1
Now solve the equation d=\frac{0±16}{16} when ± is plus. Divide 16 by 16.
d=-1
Now solve the equation d=\frac{0±16}{16} when ± is minus. Divide -16 by 16.
d=1 d=-1
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}