Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

a+b=20 ab=3\times 12=36
Factor the expression by grouping. First, the expression needs to be rewritten as 3d^{2}+ad+bd+12. To find a and b, set up a system to be solved.
1,36 2,18 3,12 4,9 6,6
Since ab is positive, a and b have the same sign. Since a+b is positive, a and b are both positive. List all such integer pairs that give product 36.
1+36=37 2+18=20 3+12=15 4+9=13 6+6=12
Calculate the sum for each pair.
a=2 b=18
The solution is the pair that gives sum 20.
\left(3d^{2}+2d\right)+\left(18d+12\right)
Rewrite 3d^{2}+20d+12 as \left(3d^{2}+2d\right)+\left(18d+12\right).
d\left(3d+2\right)+6\left(3d+2\right)
Factor out d in the first and 6 in the second group.
\left(3d+2\right)\left(d+6\right)
Factor out common term 3d+2 by using distributive property.
3d^{2}+20d+12=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
d=\frac{-20±\sqrt{20^{2}-4\times 3\times 12}}{2\times 3}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
d=\frac{-20±\sqrt{400-4\times 3\times 12}}{2\times 3}
Square 20.
d=\frac{-20±\sqrt{400-12\times 12}}{2\times 3}
Multiply -4 times 3.
d=\frac{-20±\sqrt{400-144}}{2\times 3}
Multiply -12 times 12.
d=\frac{-20±\sqrt{256}}{2\times 3}
Add 400 to -144.
d=\frac{-20±16}{2\times 3}
Take the square root of 256.
d=\frac{-20±16}{6}
Multiply 2 times 3.
d=-\frac{4}{6}
Now solve the equation d=\frac{-20±16}{6} when ± is plus. Add -20 to 16.
d=-\frac{2}{3}
Reduce the fraction \frac{-4}{6} to lowest terms by extracting and canceling out 2.
d=-\frac{36}{6}
Now solve the equation d=\frac{-20±16}{6} when ± is minus. Subtract 16 from -20.
d=-6
Divide -36 by 6.
3d^{2}+20d+12=3\left(d-\left(-\frac{2}{3}\right)\right)\left(d-\left(-6\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute -\frac{2}{3} for x_{1} and -6 for x_{2}.
3d^{2}+20d+12=3\left(d+\frac{2}{3}\right)\left(d+6\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.
3d^{2}+20d+12=3\times \frac{3d+2}{3}\left(d+6\right)
Add \frac{2}{3} to d by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
3d^{2}+20d+12=\left(3d+2\right)\left(d+6\right)
Cancel out 3, the greatest common factor in 3 and 3.
x ^ 2 +\frac{20}{3}x +4 = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.This is achieved by dividing both sides of the equation by 3
r + s = -\frac{20}{3} rs = 4
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = -\frac{10}{3} - u s = -\frac{10}{3} + u
Two numbers r and s sum up to -\frac{20}{3} exactly when the average of the two numbers is \frac{1}{2}*-\frac{20}{3} = -\frac{10}{3}. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath.azureedge.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(-\frac{10}{3} - u) (-\frac{10}{3} + u) = 4
To solve for unknown quantity u, substitute these in the product equation rs = 4
\frac{100}{9} - u^2 = 4
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = 4-\frac{100}{9} = -\frac{64}{9}
Simplify the expression by subtracting \frac{100}{9} on both sides
u^2 = \frac{64}{9} u = \pm\sqrt{\frac{64}{9}} = \pm \frac{8}{3}
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =-\frac{10}{3} - \frac{8}{3} = -6 s = -\frac{10}{3} + \frac{8}{3} = -0.667
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.