Skip to main content
Solve for c
Tick mark Image

Similar Problems from Web Search

Share

3c^{2}-10c+7=0
Combine -7c and -3c to get -10c.
a+b=-10 ab=3\times 7=21
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as 3c^{2}+ac+bc+7. To find a and b, set up a system to be solved.
-1,-21 -3,-7
Since ab is positive, a and b have the same sign. Since a+b is negative, a and b are both negative. List all such integer pairs that give product 21.
-1-21=-22 -3-7=-10
Calculate the sum for each pair.
a=-7 b=-3
The solution is the pair that gives sum -10.
\left(3c^{2}-7c\right)+\left(-3c+7\right)
Rewrite 3c^{2}-10c+7 as \left(3c^{2}-7c\right)+\left(-3c+7\right).
c\left(3c-7\right)-\left(3c-7\right)
Factor out c in the first and -1 in the second group.
\left(3c-7\right)\left(c-1\right)
Factor out common term 3c-7 by using distributive property.
c=\frac{7}{3} c=1
To find equation solutions, solve 3c-7=0 and c-1=0.
3c^{2}-10c+7=0
Combine -7c and -3c to get -10c.
c=\frac{-\left(-10\right)±\sqrt{\left(-10\right)^{2}-4\times 3\times 7}}{2\times 3}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 3 for a, -10 for b, and 7 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
c=\frac{-\left(-10\right)±\sqrt{100-4\times 3\times 7}}{2\times 3}
Square -10.
c=\frac{-\left(-10\right)±\sqrt{100-12\times 7}}{2\times 3}
Multiply -4 times 3.
c=\frac{-\left(-10\right)±\sqrt{100-84}}{2\times 3}
Multiply -12 times 7.
c=\frac{-\left(-10\right)±\sqrt{16}}{2\times 3}
Add 100 to -84.
c=\frac{-\left(-10\right)±4}{2\times 3}
Take the square root of 16.
c=\frac{10±4}{2\times 3}
The opposite of -10 is 10.
c=\frac{10±4}{6}
Multiply 2 times 3.
c=\frac{14}{6}
Now solve the equation c=\frac{10±4}{6} when ± is plus. Add 10 to 4.
c=\frac{7}{3}
Reduce the fraction \frac{14}{6} to lowest terms by extracting and canceling out 2.
c=\frac{6}{6}
Now solve the equation c=\frac{10±4}{6} when ± is minus. Subtract 4 from 10.
c=1
Divide 6 by 6.
c=\frac{7}{3} c=1
The equation is now solved.
3c^{2}-10c+7=0
Combine -7c and -3c to get -10c.
3c^{2}-10c=-7
Subtract 7 from both sides. Anything subtracted from zero gives its negation.
\frac{3c^{2}-10c}{3}=-\frac{7}{3}
Divide both sides by 3.
c^{2}-\frac{10}{3}c=-\frac{7}{3}
Dividing by 3 undoes the multiplication by 3.
c^{2}-\frac{10}{3}c+\left(-\frac{5}{3}\right)^{2}=-\frac{7}{3}+\left(-\frac{5}{3}\right)^{2}
Divide -\frac{10}{3}, the coefficient of the x term, by 2 to get -\frac{5}{3}. Then add the square of -\frac{5}{3} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
c^{2}-\frac{10}{3}c+\frac{25}{9}=-\frac{7}{3}+\frac{25}{9}
Square -\frac{5}{3} by squaring both the numerator and the denominator of the fraction.
c^{2}-\frac{10}{3}c+\frac{25}{9}=\frac{4}{9}
Add -\frac{7}{3} to \frac{25}{9} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(c-\frac{5}{3}\right)^{2}=\frac{4}{9}
Factor c^{2}-\frac{10}{3}c+\frac{25}{9}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(c-\frac{5}{3}\right)^{2}}=\sqrt{\frac{4}{9}}
Take the square root of both sides of the equation.
c-\frac{5}{3}=\frac{2}{3} c-\frac{5}{3}=-\frac{2}{3}
Simplify.
c=\frac{7}{3} c=1
Add \frac{5}{3} to both sides of the equation.