Solve for b
b=\frac{50-10x}{3}
Solve for x
x=-\frac{3b}{10}+5
Graph
Share
Copied to clipboard
3b-\left(25-10x+x^{2}\right)=25-x^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(5-x\right)^{2}.
3b-25+10x-x^{2}=25-x^{2}
To find the opposite of 25-10x+x^{2}, find the opposite of each term.
3b+10x-x^{2}=25-x^{2}+25
Add 25 to both sides.
3b+10x-x^{2}=50-x^{2}
Add 25 and 25 to get 50.
3b-x^{2}=50-x^{2}-10x
Subtract 10x from both sides.
3b=50-x^{2}-10x+x^{2}
Add x^{2} to both sides.
3b=50-10x
Combine -x^{2} and x^{2} to get 0.
\frac{3b}{3}=\frac{50-10x}{3}
Divide both sides by 3.
b=\frac{50-10x}{3}
Dividing by 3 undoes the multiplication by 3.
3b-\left(25-10x+x^{2}\right)=25-x^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(5-x\right)^{2}.
3b-25+10x-x^{2}=25-x^{2}
To find the opposite of 25-10x+x^{2}, find the opposite of each term.
3b-25+10x-x^{2}+x^{2}=25
Add x^{2} to both sides.
3b-25+10x=25
Combine -x^{2} and x^{2} to get 0.
-25+10x=25-3b
Subtract 3b from both sides.
10x=25-3b+25
Add 25 to both sides.
10x=50-3b
Add 25 and 25 to get 50.
\frac{10x}{10}=\frac{50-3b}{10}
Divide both sides by 10.
x=\frac{50-3b}{10}
Dividing by 10 undoes the multiplication by 10.
x=-\frac{3b}{10}+5
Divide 50-3b by 10.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}