Solve for b
b = \frac{\sqrt{61} + 4}{3} \approx 3.936749892
b=\frac{4-\sqrt{61}}{3}\approx -1.270083225
Share
Copied to clipboard
3b^{2}-8b-15=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
b=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}-4\times 3\left(-15\right)}}{2\times 3}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 3 for a, -8 for b, and -15 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
b=\frac{-\left(-8\right)±\sqrt{64-4\times 3\left(-15\right)}}{2\times 3}
Square -8.
b=\frac{-\left(-8\right)±\sqrt{64-12\left(-15\right)}}{2\times 3}
Multiply -4 times 3.
b=\frac{-\left(-8\right)±\sqrt{64+180}}{2\times 3}
Multiply -12 times -15.
b=\frac{-\left(-8\right)±\sqrt{244}}{2\times 3}
Add 64 to 180.
b=\frac{-\left(-8\right)±2\sqrt{61}}{2\times 3}
Take the square root of 244.
b=\frac{8±2\sqrt{61}}{2\times 3}
The opposite of -8 is 8.
b=\frac{8±2\sqrt{61}}{6}
Multiply 2 times 3.
b=\frac{2\sqrt{61}+8}{6}
Now solve the equation b=\frac{8±2\sqrt{61}}{6} when ± is plus. Add 8 to 2\sqrt{61}.
b=\frac{\sqrt{61}+4}{3}
Divide 8+2\sqrt{61} by 6.
b=\frac{8-2\sqrt{61}}{6}
Now solve the equation b=\frac{8±2\sqrt{61}}{6} when ± is minus. Subtract 2\sqrt{61} from 8.
b=\frac{4-\sqrt{61}}{3}
Divide 8-2\sqrt{61} by 6.
b=\frac{\sqrt{61}+4}{3} b=\frac{4-\sqrt{61}}{3}
The equation is now solved.
3b^{2}-8b-15=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
3b^{2}-8b-15-\left(-15\right)=-\left(-15\right)
Add 15 to both sides of the equation.
3b^{2}-8b=-\left(-15\right)
Subtracting -15 from itself leaves 0.
3b^{2}-8b=15
Subtract -15 from 0.
\frac{3b^{2}-8b}{3}=\frac{15}{3}
Divide both sides by 3.
b^{2}-\frac{8}{3}b=\frac{15}{3}
Dividing by 3 undoes the multiplication by 3.
b^{2}-\frac{8}{3}b=5
Divide 15 by 3.
b^{2}-\frac{8}{3}b+\left(-\frac{4}{3}\right)^{2}=5+\left(-\frac{4}{3}\right)^{2}
Divide -\frac{8}{3}, the coefficient of the x term, by 2 to get -\frac{4}{3}. Then add the square of -\frac{4}{3} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
b^{2}-\frac{8}{3}b+\frac{16}{9}=5+\frac{16}{9}
Square -\frac{4}{3} by squaring both the numerator and the denominator of the fraction.
b^{2}-\frac{8}{3}b+\frac{16}{9}=\frac{61}{9}
Add 5 to \frac{16}{9}.
\left(b-\frac{4}{3}\right)^{2}=\frac{61}{9}
Factor b^{2}-\frac{8}{3}b+\frac{16}{9}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(b-\frac{4}{3}\right)^{2}}=\sqrt{\frac{61}{9}}
Take the square root of both sides of the equation.
b-\frac{4}{3}=\frac{\sqrt{61}}{3} b-\frac{4}{3}=-\frac{\sqrt{61}}{3}
Simplify.
b=\frac{\sqrt{61}+4}{3} b=\frac{4-\sqrt{61}}{3}
Add \frac{4}{3} to both sides of the equation.
x ^ 2 -\frac{8}{3}x -5 = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.This is achieved by dividing both sides of the equation by 3
r + s = \frac{8}{3} rs = -5
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = \frac{4}{3} - u s = \frac{4}{3} + u
Two numbers r and s sum up to \frac{8}{3} exactly when the average of the two numbers is \frac{1}{2}*\frac{8}{3} = \frac{4}{3}. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath.azureedge.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(\frac{4}{3} - u) (\frac{4}{3} + u) = -5
To solve for unknown quantity u, substitute these in the product equation rs = -5
\frac{16}{9} - u^2 = -5
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = -5-\frac{16}{9} = -\frac{61}{9}
Simplify the expression by subtracting \frac{16}{9} on both sides
u^2 = \frac{61}{9} u = \pm\sqrt{\frac{61}{9}} = \pm \frac{\sqrt{61}}{3}
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =\frac{4}{3} - \frac{\sqrt{61}}{3} = -1.270 s = \frac{4}{3} + \frac{\sqrt{61}}{3} = 3.937
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}