Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

3b^{2}-72b+144=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
b=\frac{-\left(-72\right)±\sqrt{\left(-72\right)^{2}-4\times 3\times 144}}{2\times 3}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
b=\frac{-\left(-72\right)±\sqrt{5184-4\times 3\times 144}}{2\times 3}
Square -72.
b=\frac{-\left(-72\right)±\sqrt{5184-12\times 144}}{2\times 3}
Multiply -4 times 3.
b=\frac{-\left(-72\right)±\sqrt{5184-1728}}{2\times 3}
Multiply -12 times 144.
b=\frac{-\left(-72\right)±\sqrt{3456}}{2\times 3}
Add 5184 to -1728.
b=\frac{-\left(-72\right)±24\sqrt{6}}{2\times 3}
Take the square root of 3456.
b=\frac{72±24\sqrt{6}}{2\times 3}
The opposite of -72 is 72.
b=\frac{72±24\sqrt{6}}{6}
Multiply 2 times 3.
b=\frac{24\sqrt{6}+72}{6}
Now solve the equation b=\frac{72±24\sqrt{6}}{6} when ± is plus. Add 72 to 24\sqrt{6}.
b=4\sqrt{6}+12
Divide 72+24\sqrt{6} by 6.
b=\frac{72-24\sqrt{6}}{6}
Now solve the equation b=\frac{72±24\sqrt{6}}{6} when ± is minus. Subtract 24\sqrt{6} from 72.
b=12-4\sqrt{6}
Divide 72-24\sqrt{6} by 6.
3b^{2}-72b+144=3\left(b-\left(4\sqrt{6}+12\right)\right)\left(b-\left(12-4\sqrt{6}\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 12+4\sqrt{6} for x_{1} and 12-4\sqrt{6} for x_{2}.
x ^ 2 -24x +48 = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.This is achieved by dividing both sides of the equation by 3
r + s = 24 rs = 48
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = 12 - u s = 12 + u
Two numbers r and s sum up to 24 exactly when the average of the two numbers is \frac{1}{2}*24 = 12. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath.azureedge.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(12 - u) (12 + u) = 48
To solve for unknown quantity u, substitute these in the product equation rs = 48
144 - u^2 = 48
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = 48-144 = -96
Simplify the expression by subtracting 144 on both sides
u^2 = 96 u = \pm\sqrt{96} = \pm \sqrt{96}
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =12 - \sqrt{96} = 2.202 s = 12 + \sqrt{96} = 21.798
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.