Skip to main content
Solve for b
Tick mark Image

Similar Problems from Web Search

Share

3b^{2}=72
Add 72 to both sides. Anything plus zero gives itself.
b^{2}=\frac{72}{3}
Divide both sides by 3.
b^{2}=24
Divide 72 by 3 to get 24.
b=2\sqrt{6} b=-2\sqrt{6}
Take the square root of both sides of the equation.
3b^{2}-72=0
Quadratic equations like this one, with an x^{2} term but no x term, can still be solved using the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, once they are put in standard form: ax^{2}+bx+c=0.
b=\frac{0±\sqrt{0^{2}-4\times 3\left(-72\right)}}{2\times 3}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 3 for a, 0 for b, and -72 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
b=\frac{0±\sqrt{-4\times 3\left(-72\right)}}{2\times 3}
Square 0.
b=\frac{0±\sqrt{-12\left(-72\right)}}{2\times 3}
Multiply -4 times 3.
b=\frac{0±\sqrt{864}}{2\times 3}
Multiply -12 times -72.
b=\frac{0±12\sqrt{6}}{2\times 3}
Take the square root of 864.
b=\frac{0±12\sqrt{6}}{6}
Multiply 2 times 3.
b=2\sqrt{6}
Now solve the equation b=\frac{0±12\sqrt{6}}{6} when ± is plus.
b=-2\sqrt{6}
Now solve the equation b=\frac{0±12\sqrt{6}}{6} when ± is minus.
b=2\sqrt{6} b=-2\sqrt{6}
The equation is now solved.