Solve for b
b = \frac{\sqrt{65} - 1}{2} \approx 3.531128874
b=\frac{-\sqrt{65}-1}{2}\approx -4.531128874
Share
Copied to clipboard
3b^{2}+3b-48=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
b=\frac{-3±\sqrt{3^{2}-4\times 3\left(-48\right)}}{2\times 3}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 3 for a, 3 for b, and -48 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
b=\frac{-3±\sqrt{9-4\times 3\left(-48\right)}}{2\times 3}
Square 3.
b=\frac{-3±\sqrt{9-12\left(-48\right)}}{2\times 3}
Multiply -4 times 3.
b=\frac{-3±\sqrt{9+576}}{2\times 3}
Multiply -12 times -48.
b=\frac{-3±\sqrt{585}}{2\times 3}
Add 9 to 576.
b=\frac{-3±3\sqrt{65}}{2\times 3}
Take the square root of 585.
b=\frac{-3±3\sqrt{65}}{6}
Multiply 2 times 3.
b=\frac{3\sqrt{65}-3}{6}
Now solve the equation b=\frac{-3±3\sqrt{65}}{6} when ± is plus. Add -3 to 3\sqrt{65}.
b=\frac{\sqrt{65}-1}{2}
Divide -3+3\sqrt{65} by 6.
b=\frac{-3\sqrt{65}-3}{6}
Now solve the equation b=\frac{-3±3\sqrt{65}}{6} when ± is minus. Subtract 3\sqrt{65} from -3.
b=\frac{-\sqrt{65}-1}{2}
Divide -3-3\sqrt{65} by 6.
b=\frac{\sqrt{65}-1}{2} b=\frac{-\sqrt{65}-1}{2}
The equation is now solved.
3b^{2}+3b-48=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
3b^{2}+3b-48-\left(-48\right)=-\left(-48\right)
Add 48 to both sides of the equation.
3b^{2}+3b=-\left(-48\right)
Subtracting -48 from itself leaves 0.
3b^{2}+3b=48
Subtract -48 from 0.
\frac{3b^{2}+3b}{3}=\frac{48}{3}
Divide both sides by 3.
b^{2}+\frac{3}{3}b=\frac{48}{3}
Dividing by 3 undoes the multiplication by 3.
b^{2}+b=\frac{48}{3}
Divide 3 by 3.
b^{2}+b=16
Divide 48 by 3.
b^{2}+b+\left(\frac{1}{2}\right)^{2}=16+\left(\frac{1}{2}\right)^{2}
Divide 1, the coefficient of the x term, by 2 to get \frac{1}{2}. Then add the square of \frac{1}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
b^{2}+b+\frac{1}{4}=16+\frac{1}{4}
Square \frac{1}{2} by squaring both the numerator and the denominator of the fraction.
b^{2}+b+\frac{1}{4}=\frac{65}{4}
Add 16 to \frac{1}{4}.
\left(b+\frac{1}{2}\right)^{2}=\frac{65}{4}
Factor b^{2}+b+\frac{1}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(b+\frac{1}{2}\right)^{2}}=\sqrt{\frac{65}{4}}
Take the square root of both sides of the equation.
b+\frac{1}{2}=\frac{\sqrt{65}}{2} b+\frac{1}{2}=-\frac{\sqrt{65}}{2}
Simplify.
b=\frac{\sqrt{65}-1}{2} b=\frac{-\sqrt{65}-1}{2}
Subtract \frac{1}{2} from both sides of the equation.
x ^ 2 +1x -16 = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.This is achieved by dividing both sides of the equation by 3
r + s = -1 rs = -16
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = -\frac{1}{2} - u s = -\frac{1}{2} + u
Two numbers r and s sum up to -1 exactly when the average of the two numbers is \frac{1}{2}*-1 = -\frac{1}{2}. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath.azureedge.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(-\frac{1}{2} - u) (-\frac{1}{2} + u) = -16
To solve for unknown quantity u, substitute these in the product equation rs = -16
\frac{1}{4} - u^2 = -16
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = -16-\frac{1}{4} = -\frac{65}{4}
Simplify the expression by subtracting \frac{1}{4} on both sides
u^2 = \frac{65}{4} u = \pm\sqrt{\frac{65}{4}} = \pm \frac{\sqrt{65}}{2}
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =-\frac{1}{2} - \frac{\sqrt{65}}{2} = -4.531 s = -\frac{1}{2} + \frac{\sqrt{65}}{2} = 3.531
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}