Skip to main content
Solve for b
Tick mark Image

Similar Problems from Web Search

Share

3b^{2}+18b+17-b=0
Subtract b from both sides.
3b^{2}+17b+17=0
Combine 18b and -b to get 17b.
b=\frac{-17±\sqrt{17^{2}-4\times 3\times 17}}{2\times 3}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 3 for a, 17 for b, and 17 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
b=\frac{-17±\sqrt{289-4\times 3\times 17}}{2\times 3}
Square 17.
b=\frac{-17±\sqrt{289-12\times 17}}{2\times 3}
Multiply -4 times 3.
b=\frac{-17±\sqrt{289-204}}{2\times 3}
Multiply -12 times 17.
b=\frac{-17±\sqrt{85}}{2\times 3}
Add 289 to -204.
b=\frac{-17±\sqrt{85}}{6}
Multiply 2 times 3.
b=\frac{\sqrt{85}-17}{6}
Now solve the equation b=\frac{-17±\sqrt{85}}{6} when ± is plus. Add -17 to \sqrt{85}.
b=\frac{-\sqrt{85}-17}{6}
Now solve the equation b=\frac{-17±\sqrt{85}}{6} when ± is minus. Subtract \sqrt{85} from -17.
b=\frac{\sqrt{85}-17}{6} b=\frac{-\sqrt{85}-17}{6}
The equation is now solved.
3b^{2}+18b+17-b=0
Subtract b from both sides.
3b^{2}+17b+17=0
Combine 18b and -b to get 17b.
3b^{2}+17b=-17
Subtract 17 from both sides. Anything subtracted from zero gives its negation.
\frac{3b^{2}+17b}{3}=-\frac{17}{3}
Divide both sides by 3.
b^{2}+\frac{17}{3}b=-\frac{17}{3}
Dividing by 3 undoes the multiplication by 3.
b^{2}+\frac{17}{3}b+\left(\frac{17}{6}\right)^{2}=-\frac{17}{3}+\left(\frac{17}{6}\right)^{2}
Divide \frac{17}{3}, the coefficient of the x term, by 2 to get \frac{17}{6}. Then add the square of \frac{17}{6} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
b^{2}+\frac{17}{3}b+\frac{289}{36}=-\frac{17}{3}+\frac{289}{36}
Square \frac{17}{6} by squaring both the numerator and the denominator of the fraction.
b^{2}+\frac{17}{3}b+\frac{289}{36}=\frac{85}{36}
Add -\frac{17}{3} to \frac{289}{36} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(b+\frac{17}{6}\right)^{2}=\frac{85}{36}
Factor b^{2}+\frac{17}{3}b+\frac{289}{36}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(b+\frac{17}{6}\right)^{2}}=\sqrt{\frac{85}{36}}
Take the square root of both sides of the equation.
b+\frac{17}{6}=\frac{\sqrt{85}}{6} b+\frac{17}{6}=-\frac{\sqrt{85}}{6}
Simplify.
b=\frac{\sqrt{85}-17}{6} b=\frac{-\sqrt{85}-17}{6}
Subtract \frac{17}{6} from both sides of the equation.