Solve for a
a=\frac{b+6c}{3}
Solve for b
b=3\left(a-2c\right)
Share
Copied to clipboard
3a=6c+b
Add b to both sides.
3a=b+6c
The equation is in standard form.
\frac{3a}{3}=\frac{b+6c}{3}
Divide both sides by 3.
a=\frac{b+6c}{3}
Dividing by 3 undoes the multiplication by 3.
a=\frac{b}{3}+2c
Divide 6c+b by 3.
-b=6c-3a
Subtract 3a from both sides.
\frac{-b}{-1}=\frac{6c-3a}{-1}
Divide both sides by -1.
b=\frac{6c-3a}{-1}
Dividing by -1 undoes the multiplication by -1.
b=3a-6c
Divide 6c-3a by -1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}