Solve for a
a=\frac{2\left(b+18\right)}{3}
Solve for b
b=\frac{3\left(a-12\right)}{2}
Share
Copied to clipboard
3a+5=41+2b
Add 2b to both sides.
3a=41+2b-5
Subtract 5 from both sides.
3a=36+2b
Subtract 5 from 41 to get 36.
3a=2b+36
The equation is in standard form.
\frac{3a}{3}=\frac{2b+36}{3}
Divide both sides by 3.
a=\frac{2b+36}{3}
Dividing by 3 undoes the multiplication by 3.
a=\frac{2b}{3}+12
Divide 36+2b by 3.
-2b+5=41-3a
Subtract 3a from both sides.
-2b=41-3a-5
Subtract 5 from both sides.
-2b=36-3a
Subtract 5 from 41 to get 36.
\frac{-2b}{-2}=\frac{36-3a}{-2}
Divide both sides by -2.
b=\frac{36-3a}{-2}
Dividing by -2 undoes the multiplication by -2.
b=\frac{3a}{2}-18
Divide 36-3a by -2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}