Skip to main content
Solve for a
Tick mark Image

Similar Problems from Web Search

Share

3a-2-a^{2}=0
Subtract a^{2} from both sides.
-a^{2}+3a-2=0
Rearrange the polynomial to put it in standard form. Place the terms in order from highest to lowest power.
a+b=3 ab=-\left(-2\right)=2
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as -a^{2}+aa+ba-2. To find a and b, set up a system to be solved.
a=2 b=1
Since ab is positive, a and b have the same sign. Since a+b is positive, a and b are both positive. The only such pair is the system solution.
\left(-a^{2}+2a\right)+\left(a-2\right)
Rewrite -a^{2}+3a-2 as \left(-a^{2}+2a\right)+\left(a-2\right).
-a\left(a-2\right)+a-2
Factor out -a in -a^{2}+2a.
\left(a-2\right)\left(-a+1\right)
Factor out common term a-2 by using distributive property.
a=2 a=1
To find equation solutions, solve a-2=0 and -a+1=0.
3a-2-a^{2}=0
Subtract a^{2} from both sides.
-a^{2}+3a-2=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
a=\frac{-3±\sqrt{3^{2}-4\left(-1\right)\left(-2\right)}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, 3 for b, and -2 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
a=\frac{-3±\sqrt{9-4\left(-1\right)\left(-2\right)}}{2\left(-1\right)}
Square 3.
a=\frac{-3±\sqrt{9+4\left(-2\right)}}{2\left(-1\right)}
Multiply -4 times -1.
a=\frac{-3±\sqrt{9-8}}{2\left(-1\right)}
Multiply 4 times -2.
a=\frac{-3±\sqrt{1}}{2\left(-1\right)}
Add 9 to -8.
a=\frac{-3±1}{2\left(-1\right)}
Take the square root of 1.
a=\frac{-3±1}{-2}
Multiply 2 times -1.
a=-\frac{2}{-2}
Now solve the equation a=\frac{-3±1}{-2} when ± is plus. Add -3 to 1.
a=1
Divide -2 by -2.
a=-\frac{4}{-2}
Now solve the equation a=\frac{-3±1}{-2} when ± is minus. Subtract 1 from -3.
a=2
Divide -4 by -2.
a=1 a=2
The equation is now solved.
3a-2-a^{2}=0
Subtract a^{2} from both sides.
3a-a^{2}=2
Add 2 to both sides. Anything plus zero gives itself.
-a^{2}+3a=2
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-a^{2}+3a}{-1}=\frac{2}{-1}
Divide both sides by -1.
a^{2}+\frac{3}{-1}a=\frac{2}{-1}
Dividing by -1 undoes the multiplication by -1.
a^{2}-3a=\frac{2}{-1}
Divide 3 by -1.
a^{2}-3a=-2
Divide 2 by -1.
a^{2}-3a+\left(-\frac{3}{2}\right)^{2}=-2+\left(-\frac{3}{2}\right)^{2}
Divide -3, the coefficient of the x term, by 2 to get -\frac{3}{2}. Then add the square of -\frac{3}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
a^{2}-3a+\frac{9}{4}=-2+\frac{9}{4}
Square -\frac{3}{2} by squaring both the numerator and the denominator of the fraction.
a^{2}-3a+\frac{9}{4}=\frac{1}{4}
Add -2 to \frac{9}{4}.
\left(a-\frac{3}{2}\right)^{2}=\frac{1}{4}
Factor a^{2}-3a+\frac{9}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(a-\frac{3}{2}\right)^{2}}=\sqrt{\frac{1}{4}}
Take the square root of both sides of the equation.
a-\frac{3}{2}=\frac{1}{2} a-\frac{3}{2}=-\frac{1}{2}
Simplify.
a=2 a=1
Add \frac{3}{2} to both sides of the equation.