Solve for a
a=1
Share
Copied to clipboard
3a-3a-5=2\left(a-2\right)-3
To find the opposite of 3a+5, find the opposite of each term.
-5=2\left(a-2\right)-3
Combine 3a and -3a to get 0.
-5=2a-4-3
Use the distributive property to multiply 2 by a-2.
-5=2a-7
Subtract 3 from -4 to get -7.
2a-7=-5
Swap sides so that all variable terms are on the left hand side.
2a=-5+7
Add 7 to both sides.
2a=2
Add -5 and 7 to get 2.
a=\frac{2}{2}
Divide both sides by 2.
a=1
Divide 2 by 2 to get 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}