Evaluate
1-10a-2a^{2}
Expand
1-10a-2a^{2}
Share
Copied to clipboard
3a^{2}-6a-\left(5a-1\right)\left(a+1\right)
Use the distributive property to multiply 3a by a-2.
3a^{2}-6a-\left(5a^{2}+5a-a-1\right)
Apply the distributive property by multiplying each term of 5a-1 by each term of a+1.
3a^{2}-6a-\left(5a^{2}+4a-1\right)
Combine 5a and -a to get 4a.
3a^{2}-6a-5a^{2}-4a-\left(-1\right)
To find the opposite of 5a^{2}+4a-1, find the opposite of each term.
3a^{2}-6a-5a^{2}-4a+1
The opposite of -1 is 1.
-2a^{2}-6a-4a+1
Combine 3a^{2} and -5a^{2} to get -2a^{2}.
-2a^{2}-10a+1
Combine -6a and -4a to get -10a.
3a^{2}-6a-\left(5a-1\right)\left(a+1\right)
Use the distributive property to multiply 3a by a-2.
3a^{2}-6a-\left(5a^{2}+5a-a-1\right)
Apply the distributive property by multiplying each term of 5a-1 by each term of a+1.
3a^{2}-6a-\left(5a^{2}+4a-1\right)
Combine 5a and -a to get 4a.
3a^{2}-6a-5a^{2}-4a-\left(-1\right)
To find the opposite of 5a^{2}+4a-1, find the opposite of each term.
3a^{2}-6a-5a^{2}-4a+1
The opposite of -1 is 1.
-2a^{2}-6a-4a+1
Combine 3a^{2} and -5a^{2} to get -2a^{2}.
-2a^{2}-10a+1
Combine -6a and -4a to get -10a.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}