Solve for a
a=1
a = \frac{5}{3} = 1\frac{2}{3} \approx 1.666666667
Share
Copied to clipboard
±\frac{5}{3},±5,±\frac{1}{3},±1
By Rational Root Theorem, all rational roots of a polynomial are in the form \frac{p}{q}, where p divides the constant term -5 and q divides the leading coefficient 3. List all candidates \frac{p}{q}.
a=1
Find one such root by trying out all the integer values, starting from the smallest by absolute value. If no integer roots are found, try out fractions.
3a^{2}-8a+5=0
By Factor theorem, a-k is a factor of the polynomial for each root k. Divide 3a^{3}-11a^{2}+13a-5 by a-1 to get 3a^{2}-8a+5. Solve the equation where the result equals to 0.
a=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}-4\times 3\times 5}}{2\times 3}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 3 for a, -8 for b, and 5 for c in the quadratic formula.
a=\frac{8±2}{6}
Do the calculations.
a=1 a=\frac{5}{3}
Solve the equation 3a^{2}-8a+5=0 when ± is plus and when ± is minus.
a=1 a=\frac{5}{3}
List all found solutions.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}