Factor
3b\left(a-8\right)\left(a+3\right)
Evaluate
3b\left(a-8\right)\left(a+3\right)
Share
Copied to clipboard
3\left(a^{2}b-5ab-24b\right)
Factor out 3.
b\left(a^{2}-5a-24\right)
Consider a^{2}b-5ab-24b. Factor out b.
p+q=-5 pq=1\left(-24\right)=-24
Consider a^{2}-5a-24. Factor the expression by grouping. First, the expression needs to be rewritten as a^{2}+pa+qa-24. To find p and q, set up a system to be solved.
1,-24 2,-12 3,-8 4,-6
Since pq is negative, p and q have the opposite signs. Since p+q is negative, the negative number has greater absolute value than the positive. List all such integer pairs that give product -24.
1-24=-23 2-12=-10 3-8=-5 4-6=-2
Calculate the sum for each pair.
p=-8 q=3
The solution is the pair that gives sum -5.
\left(a^{2}-8a\right)+\left(3a-24\right)
Rewrite a^{2}-5a-24 as \left(a^{2}-8a\right)+\left(3a-24\right).
a\left(a-8\right)+3\left(a-8\right)
Factor out a in the first and 3 in the second group.
\left(a-8\right)\left(a+3\right)
Factor out common term a-8 by using distributive property.
3b\left(a-8\right)\left(a+3\right)
Rewrite the complete factored expression.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}