Solve for a
a=\frac{2\sqrt{247}}{13}+2\approx 4.417882099
a=-\frac{2\sqrt{247}}{13}+2\approx -0.417882099
Share
Copied to clipboard
3a^{2}-4a=16a^{2}-56a-24
Use the distributive property to multiply 8 by 2a^{2}-7a-3.
3a^{2}-4a-16a^{2}=-56a-24
Subtract 16a^{2} from both sides.
-13a^{2}-4a=-56a-24
Combine 3a^{2} and -16a^{2} to get -13a^{2}.
-13a^{2}-4a+56a=-24
Add 56a to both sides.
-13a^{2}+52a=-24
Combine -4a and 56a to get 52a.
-13a^{2}+52a+24=0
Add 24 to both sides.
a=\frac{-52±\sqrt{52^{2}-4\left(-13\right)\times 24}}{2\left(-13\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -13 for a, 52 for b, and 24 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
a=\frac{-52±\sqrt{2704-4\left(-13\right)\times 24}}{2\left(-13\right)}
Square 52.
a=\frac{-52±\sqrt{2704+52\times 24}}{2\left(-13\right)}
Multiply -4 times -13.
a=\frac{-52±\sqrt{2704+1248}}{2\left(-13\right)}
Multiply 52 times 24.
a=\frac{-52±\sqrt{3952}}{2\left(-13\right)}
Add 2704 to 1248.
a=\frac{-52±4\sqrt{247}}{2\left(-13\right)}
Take the square root of 3952.
a=\frac{-52±4\sqrt{247}}{-26}
Multiply 2 times -13.
a=\frac{4\sqrt{247}-52}{-26}
Now solve the equation a=\frac{-52±4\sqrt{247}}{-26} when ± is plus. Add -52 to 4\sqrt{247}.
a=-\frac{2\sqrt{247}}{13}+2
Divide -52+4\sqrt{247} by -26.
a=\frac{-4\sqrt{247}-52}{-26}
Now solve the equation a=\frac{-52±4\sqrt{247}}{-26} when ± is minus. Subtract 4\sqrt{247} from -52.
a=\frac{2\sqrt{247}}{13}+2
Divide -52-4\sqrt{247} by -26.
a=-\frac{2\sqrt{247}}{13}+2 a=\frac{2\sqrt{247}}{13}+2
The equation is now solved.
3a^{2}-4a=16a^{2}-56a-24
Use the distributive property to multiply 8 by 2a^{2}-7a-3.
3a^{2}-4a-16a^{2}=-56a-24
Subtract 16a^{2} from both sides.
-13a^{2}-4a=-56a-24
Combine 3a^{2} and -16a^{2} to get -13a^{2}.
-13a^{2}-4a+56a=-24
Add 56a to both sides.
-13a^{2}+52a=-24
Combine -4a and 56a to get 52a.
\frac{-13a^{2}+52a}{-13}=-\frac{24}{-13}
Divide both sides by -13.
a^{2}+\frac{52}{-13}a=-\frac{24}{-13}
Dividing by -13 undoes the multiplication by -13.
a^{2}-4a=-\frac{24}{-13}
Divide 52 by -13.
a^{2}-4a=\frac{24}{13}
Divide -24 by -13.
a^{2}-4a+\left(-2\right)^{2}=\frac{24}{13}+\left(-2\right)^{2}
Divide -4, the coefficient of the x term, by 2 to get -2. Then add the square of -2 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
a^{2}-4a+4=\frac{24}{13}+4
Square -2.
a^{2}-4a+4=\frac{76}{13}
Add \frac{24}{13} to 4.
\left(a-2\right)^{2}=\frac{76}{13}
Factor a^{2}-4a+4. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(a-2\right)^{2}}=\sqrt{\frac{76}{13}}
Take the square root of both sides of the equation.
a-2=\frac{2\sqrt{247}}{13} a-2=-\frac{2\sqrt{247}}{13}
Simplify.
a=\frac{2\sqrt{247}}{13}+2 a=-\frac{2\sqrt{247}}{13}+2
Add 2 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}