Evaluate
-2a^{10}
Differentiate w.r.t. a
-20a^{9}
Share
Copied to clipboard
3a^{7}\left(-4\right)\times \frac{1}{6}a^{3}
To multiply powers of the same base, add their exponents. Add 2 and 5 to get 7.
3a^{10}\left(-4\right)\times \frac{1}{6}
To multiply powers of the same base, add their exponents. Add 7 and 3 to get 10.
-12a^{10}\times \frac{1}{6}
Multiply 3 and -4 to get -12.
-2a^{10}
Multiply -12 and \frac{1}{6} to get -2.
\frac{\mathrm{d}}{\mathrm{d}a}(3a^{7}\left(-4\right)\times \frac{1}{6}a^{3})
To multiply powers of the same base, add their exponents. Add 2 and 5 to get 7.
\frac{\mathrm{d}}{\mathrm{d}a}(3a^{10}\left(-4\right)\times \frac{1}{6})
To multiply powers of the same base, add their exponents. Add 7 and 3 to get 10.
\frac{\mathrm{d}}{\mathrm{d}a}(-12a^{10}\times \frac{1}{6})
Multiply 3 and -4 to get -12.
\frac{\mathrm{d}}{\mathrm{d}a}(-2a^{10})
Multiply -12 and \frac{1}{6} to get -2.
10\left(-2\right)a^{10-1}
The derivative of ax^{n} is nax^{n-1}.
-20a^{10-1}
Multiply 10 times -2.
-20a^{9}
Subtract 1 from 10.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}