Evaluate
7a^{2}
Expand
7a^{2}
Share
Copied to clipboard
3a^{2}+\left(2a\right)^{2}-\left(5b\right)^{2}-b\left(a-3b\right)+22b^{2}+ab
Consider \left(2a-5b\right)\left(2a+5b\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
3a^{2}+2^{2}a^{2}-\left(5b\right)^{2}-b\left(a-3b\right)+22b^{2}+ab
Expand \left(2a\right)^{2}.
3a^{2}+4a^{2}-\left(5b\right)^{2}-b\left(a-3b\right)+22b^{2}+ab
Calculate 2 to the power of 2 and get 4.
3a^{2}+4a^{2}-5^{2}b^{2}-b\left(a-3b\right)+22b^{2}+ab
Expand \left(5b\right)^{2}.
3a^{2}+4a^{2}-25b^{2}-b\left(a-3b\right)+22b^{2}+ab
Calculate 5 to the power of 2 and get 25.
7a^{2}-25b^{2}-b\left(a-3b\right)+22b^{2}+ab
Combine 3a^{2} and 4a^{2} to get 7a^{2}.
7a^{2}-25b^{2}-\left(ba-3b^{2}\right)+22b^{2}+ab
Use the distributive property to multiply b by a-3b.
7a^{2}-25b^{2}-ba+3b^{2}+22b^{2}+ab
To find the opposite of ba-3b^{2}, find the opposite of each term.
7a^{2}-22b^{2}-ba+22b^{2}+ab
Combine -25b^{2} and 3b^{2} to get -22b^{2}.
7a^{2}-ba+ab
Combine -22b^{2} and 22b^{2} to get 0.
7a^{2}
Combine -ba and ab to get 0.
3a^{2}+\left(2a\right)^{2}-\left(5b\right)^{2}-b\left(a-3b\right)+22b^{2}+ab
Consider \left(2a-5b\right)\left(2a+5b\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
3a^{2}+2^{2}a^{2}-\left(5b\right)^{2}-b\left(a-3b\right)+22b^{2}+ab
Expand \left(2a\right)^{2}.
3a^{2}+4a^{2}-\left(5b\right)^{2}-b\left(a-3b\right)+22b^{2}+ab
Calculate 2 to the power of 2 and get 4.
3a^{2}+4a^{2}-5^{2}b^{2}-b\left(a-3b\right)+22b^{2}+ab
Expand \left(5b\right)^{2}.
3a^{2}+4a^{2}-25b^{2}-b\left(a-3b\right)+22b^{2}+ab
Calculate 5 to the power of 2 and get 25.
7a^{2}-25b^{2}-b\left(a-3b\right)+22b^{2}+ab
Combine 3a^{2} and 4a^{2} to get 7a^{2}.
7a^{2}-25b^{2}-\left(ba-3b^{2}\right)+22b^{2}+ab
Use the distributive property to multiply b by a-3b.
7a^{2}-25b^{2}-ba+3b^{2}+22b^{2}+ab
To find the opposite of ba-3b^{2}, find the opposite of each term.
7a^{2}-22b^{2}-ba+22b^{2}+ab
Combine -25b^{2} and 3b^{2} to get -22b^{2}.
7a^{2}-ba+ab
Combine -22b^{2} and 22b^{2} to get 0.
7a^{2}
Combine -ba and ab to get 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}