Factor
3a^{2}\left(a-1\right)^{3}\left(a^{2}+a+1\right)^{3}
Evaluate
3a^{2}\left(a^{3}-1\right)^{3}
Share
Copied to clipboard
3\left(a^{11}-3a^{8}+3a^{5}-a^{2}\right)
Factor out 3.
a^{2}\left(a^{9}-3a^{6}+3a^{3}-1\right)
Consider a^{11}-3a^{8}+3a^{5}-a^{2}. Factor out a^{2}.
\left(a^{3}-1\right)\left(a^{6}-2a^{3}+1\right)
Consider a^{9}-3a^{6}+3a^{3}-1. Find one factor of the form a^{k}+m, where a^{k} divides the monomial with the highest power a^{9} and m divides the constant factor -1. One such factor is a^{3}-1. Factor the polynomial by dividing it by this factor.
\left(a-1\right)\left(a^{2}+a+1\right)
Consider a^{3}-1. Rewrite a^{3}-1 as a^{3}-1^{3}. The difference of cubes can be factored using the rule: p^{3}-q^{3}=\left(p-q\right)\left(p^{2}+pq+q^{2}\right).
\left(a^{3}-1\right)\left(a^{3}-1\right)
Consider a^{6}-2a^{3}+1. Find one factor of the form a^{n}+u, where a^{n} divides the monomial with the highest power a^{6} and u divides the constant factor 1. One such factor is a^{3}-1. Factor the polynomial by dividing it by this factor.
\left(a-1\right)\left(a^{2}+a+1\right)
Consider a^{3}-1. Rewrite a^{3}-1 as a^{3}-1^{3}. The difference of cubes can be factored using the rule: p^{3}-q^{3}=\left(p-q\right)\left(p^{2}+pq+q^{2}\right).
3a^{2}\left(a-1\right)^{3}\left(a^{2}+a+1\right)^{3}
Rewrite the complete factored expression. Polynomial a^{2}+a+1 is not factored since it does not have any rational roots.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}