Solve for a
a=\frac{c^{2}-b}{3}
Solve for b
b=c^{2}-3a
Share
Copied to clipboard
3a=-b+c^{2}
Multiply c and c to get c^{2}.
3a=c^{2}-b
The equation is in standard form.
\frac{3a}{3}=\frac{c^{2}-b}{3}
Divide both sides by 3.
a=\frac{c^{2}-b}{3}
Dividing by 3 undoes the multiplication by 3.
3a=-b+c^{2}
Multiply c and c to get c^{2}.
-b+c^{2}=3a
Swap sides so that all variable terms are on the left hand side.
-b=3a-c^{2}
Subtract c^{2} from both sides.
\frac{-b}{-1}=\frac{3a-c^{2}}{-1}
Divide both sides by -1.
b=\frac{3a-c^{2}}{-1}
Dividing by -1 undoes the multiplication by -1.
b=c^{2}-3a
Divide -c^{2}+3a by -1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}