Solve for a
a=\frac{1}{b-4c+3}
b\neq 4c-3
Solve for b
b=4c-3+\frac{1}{a}
a\neq 0
Share
Copied to clipboard
3a+ab-4ac=1
Subtract 4ac from both sides.
\left(3+b-4c\right)a=1
Combine all terms containing a.
\left(b-4c+3\right)a=1
The equation is in standard form.
\frac{\left(b-4c+3\right)a}{b-4c+3}=\frac{1}{b-4c+3}
Divide both sides by b-4c+3.
a=\frac{1}{b-4c+3}
Dividing by b-4c+3 undoes the multiplication by b-4c+3.
ab=4ac+1-3a
Subtract 3a from both sides.
ab=4ac-3a+1
The equation is in standard form.
\frac{ab}{a}=\frac{4ac-3a+1}{a}
Divide both sides by a.
b=\frac{4ac-3a+1}{a}
Dividing by a undoes the multiplication by a.
b=4c-3+\frac{1}{a}
Divide 4ac+1-3a by a.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}