Solve for a
a=-\frac{\sqrt{2}b-3b-6}{b+3}
b\neq -3
Solve for b
b=-\frac{3\left(a-2\right)}{a+\sqrt{2}-3}
a\neq 3-\sqrt{2}
Share
Copied to clipboard
3a+ab-3b=6-b\sqrt{2}
Subtract b\sqrt{2} from both sides.
3a+ab=6-b\sqrt{2}+3b
Add 3b to both sides.
ab+3a=-\sqrt{2}b+3b+6
Reorder the terms.
\left(b+3\right)a=-\sqrt{2}b+3b+6
Combine all terms containing a.
\frac{\left(b+3\right)a}{b+3}=\frac{-\sqrt{2}b+3b+6}{b+3}
Divide both sides by 3+b.
a=\frac{-\sqrt{2}b+3b+6}{b+3}
Dividing by 3+b undoes the multiplication by 3+b.
ab+b\sqrt{2}-3b=6-3a
Subtract 3a from both sides.
\left(a+\sqrt{2}-3\right)b=6-3a
Combine all terms containing b.
\frac{\left(a+\sqrt{2}-3\right)b}{a+\sqrt{2}-3}=\frac{6-3a}{a+\sqrt{2}-3}
Divide both sides by a+\sqrt{2}-3.
b=\frac{6-3a}{a+\sqrt{2}-3}
Dividing by a+\sqrt{2}-3 undoes the multiplication by a+\sqrt{2}-3.
b=\frac{3\left(2-a\right)}{a+\sqrt{2}-3}
Divide 6-3a by a+\sqrt{2}-3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}