Solve for a
a=-\frac{\left(5-\sqrt{3}\right)b}{-6b+3-\sqrt{3}}
b\neq -\frac{\sqrt{3}}{6}+\frac{1}{2}
Solve for b
b=-\frac{\sqrt{3}\left(\sqrt{3}-1\right)a}{-6a+5-\sqrt{3}}
a\neq \frac{5-\sqrt{3}}{6}
Share
Copied to clipboard
3a+5b-\sqrt{3}a=\sqrt{3}b+6ab
Subtract \sqrt{3}a from both sides.
3a+5b-\sqrt{3}a-6ab=\sqrt{3}b
Subtract 6ab from both sides.
3a-\sqrt{3}a-6ab=\sqrt{3}b-5b
Subtract 5b from both sides.
\left(3-\sqrt{3}-6b\right)a=\sqrt{3}b-5b
Combine all terms containing a.
\left(-6b+3-\sqrt{3}\right)a=\sqrt{3}b-5b
The equation is in standard form.
\frac{\left(-6b+3-\sqrt{3}\right)a}{-6b+3-\sqrt{3}}=\frac{\left(\sqrt{3}-5\right)b}{-6b+3-\sqrt{3}}
Divide both sides by 3-\sqrt{3}-6b.
a=\frac{\left(\sqrt{3}-5\right)b}{-6b+3-\sqrt{3}}
Dividing by 3-\sqrt{3}-6b undoes the multiplication by 3-\sqrt{3}-6b.
3a+5b-\sqrt{3}b=\sqrt{3}a+6ab
Subtract \sqrt{3}b from both sides.
3a+5b-\sqrt{3}b-6ab=\sqrt{3}a
Subtract 6ab from both sides.
5b-\sqrt{3}b-6ab=\sqrt{3}a-3a
Subtract 3a from both sides.
\left(5-\sqrt{3}-6a\right)b=\sqrt{3}a-3a
Combine all terms containing b.
\left(-6a+5-\sqrt{3}\right)b=\sqrt{3}a-3a
The equation is in standard form.
\frac{\left(-6a+5-\sqrt{3}\right)b}{-6a+5-\sqrt{3}}=\frac{\left(\sqrt{3}-3\right)a}{-6a+5-\sqrt{3}}
Divide both sides by 5-\sqrt{3}-6a.
b=\frac{\left(\sqrt{3}-3\right)a}{-6a+5-\sqrt{3}}
Dividing by 5-\sqrt{3}-6a undoes the multiplication by 5-\sqrt{3}-6a.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}