Solve for a
a=\frac{1000b}{3}
Solve for b
b=\frac{3a}{1000}
Share
Copied to clipboard
3a+400b-2.4a=600b
Subtract 2.4a from both sides.
0.6a+400b=600b
Combine 3a and -2.4a to get 0.6a.
0.6a=600b-400b
Subtract 400b from both sides.
0.6a=200b
Combine 600b and -400b to get 200b.
\frac{0.6a}{0.6}=\frac{200b}{0.6}
Divide both sides of the equation by 0.6, which is the same as multiplying both sides by the reciprocal of the fraction.
a=\frac{200b}{0.6}
Dividing by 0.6 undoes the multiplication by 0.6.
a=\frac{1000b}{3}
Divide 200b by 0.6 by multiplying 200b by the reciprocal of 0.6.
3a+400b-600b=2.4a
Subtract 600b from both sides.
3a-200b=2.4a
Combine 400b and -600b to get -200b.
-200b=2.4a-3a
Subtract 3a from both sides.
-200b=-0.6a
Combine 2.4a and -3a to get -0.6a.
-200b=-\frac{3a}{5}
The equation is in standard form.
\frac{-200b}{-200}=-\frac{\frac{3a}{5}}{-200}
Divide both sides by -200.
b=-\frac{\frac{3a}{5}}{-200}
Dividing by -200 undoes the multiplication by -200.
b=\frac{3a}{1000}
Divide -\frac{3a}{5} by -200.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}