Solve for a
a=-\frac{4b}{3}+14k+\frac{26}{3}
Solve for b
b=\frac{21k}{2}-\frac{3a}{4}+\frac{13}{2}
Share
Copied to clipboard
3a+4b=18k+6+4\left(6k+5\right)
Use the distributive property to multiply 3 by 6k+2.
3a+4b=18k+6+24k+20
Use the distributive property to multiply 4 by 6k+5.
3a+4b=42k+6+20
Combine 18k and 24k to get 42k.
3a+4b=42k+26
Add 6 and 20 to get 26.
3a=42k+26-4b
Subtract 4b from both sides.
3a=26+42k-4b
The equation is in standard form.
\frac{3a}{3}=\frac{26+42k-4b}{3}
Divide both sides by 3.
a=\frac{26+42k-4b}{3}
Dividing by 3 undoes the multiplication by 3.
a=-\frac{4b}{3}+14k+\frac{26}{3}
Divide 42k+26-4b by 3.
3a+4b=18k+6+4\left(6k+5\right)
Use the distributive property to multiply 3 by 6k+2.
3a+4b=18k+6+24k+20
Use the distributive property to multiply 4 by 6k+5.
3a+4b=42k+6+20
Combine 18k and 24k to get 42k.
3a+4b=42k+26
Add 6 and 20 to get 26.
4b=42k+26-3a
Subtract 3a from both sides.
4b=26+42k-3a
The equation is in standard form.
\frac{4b}{4}=\frac{26+42k-3a}{4}
Divide both sides by 4.
b=\frac{26+42k-3a}{4}
Dividing by 4 undoes the multiplication by 4.
b=\frac{21k}{2}-\frac{3a}{4}+\frac{13}{2}
Divide 42k+26-3a by 4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}