Solve for a
a\leq 1000
Share
Copied to clipboard
3a+6500-2.5a\leq 7000
Use the distributive property to multiply 2.5 by 2600-a.
0.5a+6500\leq 7000
Combine 3a and -2.5a to get 0.5a.
0.5a\leq 7000-6500
Subtract 6500 from both sides.
0.5a\leq 500
Subtract 6500 from 7000 to get 500.
a\leq \frac{500}{0.5}
Divide both sides by 0.5. Since 0.5 is positive, the inequality direction remains the same.
a\leq \frac{5000}{5}
Expand \frac{500}{0.5} by multiplying both numerator and the denominator by 10.
a\leq 1000
Divide 5000 by 5 to get 1000.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}