Solve for a
a=-3
a=0
Share
Copied to clipboard
3a+a^{2}+1-1=0
Subtract 1 from both sides.
3a+a^{2}=0
Subtract 1 from 1 to get 0.
a\left(3+a\right)=0
Factor out a.
a=0 a=-3
To find equation solutions, solve a=0 and 3+a=0.
a^{2}+3a+1=1
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
a^{2}+3a+1-1=1-1
Subtract 1 from both sides of the equation.
a^{2}+3a+1-1=0
Subtracting 1 from itself leaves 0.
a^{2}+3a=0
Subtract 1 from 1.
a=\frac{-3±\sqrt{3^{2}}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 3 for b, and 0 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
a=\frac{-3±3}{2}
Take the square root of 3^{2}.
a=\frac{0}{2}
Now solve the equation a=\frac{-3±3}{2} when ± is plus. Add -3 to 3.
a=0
Divide 0 by 2.
a=-\frac{6}{2}
Now solve the equation a=\frac{-3±3}{2} when ± is minus. Subtract 3 from -3.
a=-3
Divide -6 by 2.
a=0 a=-3
The equation is now solved.
3a+a^{2}+1-1=0
Subtract 1 from both sides.
3a+a^{2}=0
Subtract 1 from 1 to get 0.
a^{2}+3a=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
a^{2}+3a+\left(\frac{3}{2}\right)^{2}=\left(\frac{3}{2}\right)^{2}
Divide 3, the coefficient of the x term, by 2 to get \frac{3}{2}. Then add the square of \frac{3}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
a^{2}+3a+\frac{9}{4}=\frac{9}{4}
Square \frac{3}{2} by squaring both the numerator and the denominator of the fraction.
\left(a+\frac{3}{2}\right)^{2}=\frac{9}{4}
Factor a^{2}+3a+\frac{9}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(a+\frac{3}{2}\right)^{2}}=\sqrt{\frac{9}{4}}
Take the square root of both sides of the equation.
a+\frac{3}{2}=\frac{3}{2} a+\frac{3}{2}=-\frac{3}{2}
Simplify.
a=0 a=-3
Subtract \frac{3}{2} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}