Solve for a
a=\frac{2b}{3}-\frac{1}{6b}
b\neq 0
Solve for b
b=\frac{\sqrt{9a^{2}+4}+3a}{4}
b=\frac{-\sqrt{9a^{2}+4}+3a}{4}
Share
Copied to clipboard
3a\times 2b+1=2b\times 2b
Multiply both sides of the equation by 2b.
6ab+1=2b\times 2b
Multiply 3 and 2 to get 6.
6ab+1=2b^{2}\times 2
Multiply b and b to get b^{2}.
6ab+1=4b^{2}
Multiply 2 and 2 to get 4.
6ab=4b^{2}-1
Subtract 1 from both sides.
6ba=4b^{2}-1
The equation is in standard form.
\frac{6ba}{6b}=\frac{4b^{2}-1}{6b}
Divide both sides by 6b.
a=\frac{4b^{2}-1}{6b}
Dividing by 6b undoes the multiplication by 6b.
a=\frac{2b}{3}-\frac{1}{6b}
Divide 4b^{2}-1 by 6b.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}