Solve for P
P=\frac{\sqrt{33}}{6}-\frac{1}{2}\approx 0.457427108
P=-\frac{\sqrt{33}}{6}-\frac{1}{2}\approx -1.457427108
Share
Copied to clipboard
3P=2-3P^{2}
Add 1 and 1 to get 2.
3P-2=-3P^{2}
Subtract 2 from both sides.
3P-2+3P^{2}=0
Add 3P^{2} to both sides.
3P^{2}+3P-2=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
P=\frac{-3±\sqrt{3^{2}-4\times 3\left(-2\right)}}{2\times 3}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 3 for a, 3 for b, and -2 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
P=\frac{-3±\sqrt{9-4\times 3\left(-2\right)}}{2\times 3}
Square 3.
P=\frac{-3±\sqrt{9-12\left(-2\right)}}{2\times 3}
Multiply -4 times 3.
P=\frac{-3±\sqrt{9+24}}{2\times 3}
Multiply -12 times -2.
P=\frac{-3±\sqrt{33}}{2\times 3}
Add 9 to 24.
P=\frac{-3±\sqrt{33}}{6}
Multiply 2 times 3.
P=\frac{\sqrt{33}-3}{6}
Now solve the equation P=\frac{-3±\sqrt{33}}{6} when ± is plus. Add -3 to \sqrt{33}.
P=\frac{\sqrt{33}}{6}-\frac{1}{2}
Divide -3+\sqrt{33} by 6.
P=\frac{-\sqrt{33}-3}{6}
Now solve the equation P=\frac{-3±\sqrt{33}}{6} when ± is minus. Subtract \sqrt{33} from -3.
P=-\frac{\sqrt{33}}{6}-\frac{1}{2}
Divide -3-\sqrt{33} by 6.
P=\frac{\sqrt{33}}{6}-\frac{1}{2} P=-\frac{\sqrt{33}}{6}-\frac{1}{2}
The equation is now solved.
3P=2-3P^{2}
Add 1 and 1 to get 2.
3P+3P^{2}=2
Add 3P^{2} to both sides.
3P^{2}+3P=2
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{3P^{2}+3P}{3}=\frac{2}{3}
Divide both sides by 3.
P^{2}+\frac{3}{3}P=\frac{2}{3}
Dividing by 3 undoes the multiplication by 3.
P^{2}+P=\frac{2}{3}
Divide 3 by 3.
P^{2}+P+\left(\frac{1}{2}\right)^{2}=\frac{2}{3}+\left(\frac{1}{2}\right)^{2}
Divide 1, the coefficient of the x term, by 2 to get \frac{1}{2}. Then add the square of \frac{1}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
P^{2}+P+\frac{1}{4}=\frac{2}{3}+\frac{1}{4}
Square \frac{1}{2} by squaring both the numerator and the denominator of the fraction.
P^{2}+P+\frac{1}{4}=\frac{11}{12}
Add \frac{2}{3} to \frac{1}{4} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(P+\frac{1}{2}\right)^{2}=\frac{11}{12}
Factor P^{2}+P+\frac{1}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(P+\frac{1}{2}\right)^{2}}=\sqrt{\frac{11}{12}}
Take the square root of both sides of the equation.
P+\frac{1}{2}=\frac{\sqrt{33}}{6} P+\frac{1}{2}=-\frac{\sqrt{33}}{6}
Simplify.
P=\frac{\sqrt{33}}{6}-\frac{1}{2} P=-\frac{\sqrt{33}}{6}-\frac{1}{2}
Subtract \frac{1}{2} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}