Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

factor(4-x^{2}-x)
Add 3 and 1 to get 4.
-x^{2}-x+4=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-1\right)±\sqrt{1-4\left(-1\right)\times 4}}{2\left(-1\right)}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-1\right)±\sqrt{1+4\times 4}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-\left(-1\right)±\sqrt{1+16}}{2\left(-1\right)}
Multiply 4 times 4.
x=\frac{-\left(-1\right)±\sqrt{17}}{2\left(-1\right)}
Add 1 to 16.
x=\frac{1±\sqrt{17}}{2\left(-1\right)}
The opposite of -1 is 1.
x=\frac{1±\sqrt{17}}{-2}
Multiply 2 times -1.
x=\frac{\sqrt{17}+1}{-2}
Now solve the equation x=\frac{1±\sqrt{17}}{-2} when ± is plus. Add 1 to \sqrt{17}.
x=\frac{-\sqrt{17}-1}{2}
Divide 1+\sqrt{17} by -2.
x=\frac{1-\sqrt{17}}{-2}
Now solve the equation x=\frac{1±\sqrt{17}}{-2} when ± is minus. Subtract \sqrt{17} from 1.
x=\frac{\sqrt{17}-1}{2}
Divide 1-\sqrt{17} by -2.
-x^{2}-x+4=-\left(x-\frac{-\sqrt{17}-1}{2}\right)\left(x-\frac{\sqrt{17}-1}{2}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{-1-\sqrt{17}}{2} for x_{1} and \frac{-1+\sqrt{17}}{2} for x_{2}.
4-x^{2}-x
Add 3 and 1 to get 4.