Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

3-x^{2}-\frac{3}{4}x=-\frac{1}{2}
Subtract \frac{3}{4}x from both sides.
3-x^{2}-\frac{3}{4}x+\frac{1}{2}=0
Add \frac{1}{2} to both sides.
\frac{7}{2}-x^{2}-\frac{3}{4}x=0
Add 3 and \frac{1}{2} to get \frac{7}{2}.
-x^{2}-\frac{3}{4}x+\frac{7}{2}=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-\frac{3}{4}\right)±\sqrt{\left(-\frac{3}{4}\right)^{2}-4\left(-1\right)\times \frac{7}{2}}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, -\frac{3}{4} for b, and \frac{7}{2} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-\frac{3}{4}\right)±\sqrt{\frac{9}{16}-4\left(-1\right)\times \frac{7}{2}}}{2\left(-1\right)}
Square -\frac{3}{4} by squaring both the numerator and the denominator of the fraction.
x=\frac{-\left(-\frac{3}{4}\right)±\sqrt{\frac{9}{16}+4\times \frac{7}{2}}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-\left(-\frac{3}{4}\right)±\sqrt{\frac{9}{16}+14}}{2\left(-1\right)}
Multiply 4 times \frac{7}{2}.
x=\frac{-\left(-\frac{3}{4}\right)±\sqrt{\frac{233}{16}}}{2\left(-1\right)}
Add \frac{9}{16} to 14.
x=\frac{-\left(-\frac{3}{4}\right)±\frac{\sqrt{233}}{4}}{2\left(-1\right)}
Take the square root of \frac{233}{16}.
x=\frac{\frac{3}{4}±\frac{\sqrt{233}}{4}}{2\left(-1\right)}
The opposite of -\frac{3}{4} is \frac{3}{4}.
x=\frac{\frac{3}{4}±\frac{\sqrt{233}}{4}}{-2}
Multiply 2 times -1.
x=\frac{\sqrt{233}+3}{-2\times 4}
Now solve the equation x=\frac{\frac{3}{4}±\frac{\sqrt{233}}{4}}{-2} when ± is plus. Add \frac{3}{4} to \frac{\sqrt{233}}{4}.
x=\frac{-\sqrt{233}-3}{8}
Divide \frac{3+\sqrt{233}}{4} by -2.
x=\frac{3-\sqrt{233}}{-2\times 4}
Now solve the equation x=\frac{\frac{3}{4}±\frac{\sqrt{233}}{4}}{-2} when ± is minus. Subtract \frac{\sqrt{233}}{4} from \frac{3}{4}.
x=\frac{\sqrt{233}-3}{8}
Divide \frac{3-\sqrt{233}}{4} by -2.
x=\frac{-\sqrt{233}-3}{8} x=\frac{\sqrt{233}-3}{8}
The equation is now solved.
3-x^{2}-\frac{3}{4}x=-\frac{1}{2}
Subtract \frac{3}{4}x from both sides.
-x^{2}-\frac{3}{4}x=-\frac{1}{2}-3
Subtract 3 from both sides.
-x^{2}-\frac{3}{4}x=-\frac{7}{2}
Subtract 3 from -\frac{1}{2} to get -\frac{7}{2}.
\frac{-x^{2}-\frac{3}{4}x}{-1}=-\frac{\frac{7}{2}}{-1}
Divide both sides by -1.
x^{2}+\left(-\frac{\frac{3}{4}}{-1}\right)x=-\frac{\frac{7}{2}}{-1}
Dividing by -1 undoes the multiplication by -1.
x^{2}+\frac{3}{4}x=-\frac{\frac{7}{2}}{-1}
Divide -\frac{3}{4} by -1.
x^{2}+\frac{3}{4}x=\frac{7}{2}
Divide -\frac{7}{2} by -1.
x^{2}+\frac{3}{4}x+\left(\frac{3}{8}\right)^{2}=\frac{7}{2}+\left(\frac{3}{8}\right)^{2}
Divide \frac{3}{4}, the coefficient of the x term, by 2 to get \frac{3}{8}. Then add the square of \frac{3}{8} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{3}{4}x+\frac{9}{64}=\frac{7}{2}+\frac{9}{64}
Square \frac{3}{8} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{3}{4}x+\frac{9}{64}=\frac{233}{64}
Add \frac{7}{2} to \frac{9}{64} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{3}{8}\right)^{2}=\frac{233}{64}
Factor x^{2}+\frac{3}{4}x+\frac{9}{64}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{3}{8}\right)^{2}}=\sqrt{\frac{233}{64}}
Take the square root of both sides of the equation.
x+\frac{3}{8}=\frac{\sqrt{233}}{8} x+\frac{3}{8}=-\frac{\sqrt{233}}{8}
Simplify.
x=\frac{\sqrt{233}-3}{8} x=\frac{-\sqrt{233}-3}{8}
Subtract \frac{3}{8} from both sides of the equation.