Solve for k
k=1
Share
Copied to clipboard
\left(3-k\right)^{2}=\left(\sqrt{3k+1}\right)^{2}
Square both sides of the equation.
9-6k+k^{2}=\left(\sqrt{3k+1}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(3-k\right)^{2}.
9-6k+k^{2}=3k+1
Calculate \sqrt{3k+1} to the power of 2 and get 3k+1.
9-6k+k^{2}-3k=1
Subtract 3k from both sides.
9-9k+k^{2}=1
Combine -6k and -3k to get -9k.
9-9k+k^{2}-1=0
Subtract 1 from both sides.
8-9k+k^{2}=0
Subtract 1 from 9 to get 8.
k^{2}-9k+8=0
Rearrange the polynomial to put it in standard form. Place the terms in order from highest to lowest power.
a+b=-9 ab=8
To solve the equation, factor k^{2}-9k+8 using formula k^{2}+\left(a+b\right)k+ab=\left(k+a\right)\left(k+b\right). To find a and b, set up a system to be solved.
-1,-8 -2,-4
Since ab is positive, a and b have the same sign. Since a+b is negative, a and b are both negative. List all such integer pairs that give product 8.
-1-8=-9 -2-4=-6
Calculate the sum for each pair.
a=-8 b=-1
The solution is the pair that gives sum -9.
\left(k-8\right)\left(k-1\right)
Rewrite factored expression \left(k+a\right)\left(k+b\right) using the obtained values.
k=8 k=1
To find equation solutions, solve k-8=0 and k-1=0.
3-8=\sqrt{3\times 8+1}
Substitute 8 for k in the equation 3-k=\sqrt{3k+1}.
-5=5
Simplify. The value k=8 does not satisfy the equation because the left and the right hand side have opposite signs.
3-1=\sqrt{3\times 1+1}
Substitute 1 for k in the equation 3-k=\sqrt{3k+1}.
2=2
Simplify. The value k=1 satisfies the equation.
k=1
Equation 3-k=\sqrt{3k+1} has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}