Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

-a^{2}-a+3=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
a=\frac{-\left(-1\right)±\sqrt{1-4\left(-1\right)\times 3}}{2\left(-1\right)}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
a=\frac{-\left(-1\right)±\sqrt{1+4\times 3}}{2\left(-1\right)}
Multiply -4 times -1.
a=\frac{-\left(-1\right)±\sqrt{1+12}}{2\left(-1\right)}
Multiply 4 times 3.
a=\frac{-\left(-1\right)±\sqrt{13}}{2\left(-1\right)}
Add 1 to 12.
a=\frac{1±\sqrt{13}}{2\left(-1\right)}
The opposite of -1 is 1.
a=\frac{1±\sqrt{13}}{-2}
Multiply 2 times -1.
a=\frac{\sqrt{13}+1}{-2}
Now solve the equation a=\frac{1±\sqrt{13}}{-2} when ± is plus. Add 1 to \sqrt{13}.
a=\frac{-\sqrt{13}-1}{2}
Divide 1+\sqrt{13} by -2.
a=\frac{1-\sqrt{13}}{-2}
Now solve the equation a=\frac{1±\sqrt{13}}{-2} when ± is minus. Subtract \sqrt{13} from 1.
a=\frac{\sqrt{13}-1}{2}
Divide 1-\sqrt{13} by -2.
-a^{2}-a+3=-\left(a-\frac{-\sqrt{13}-1}{2}\right)\left(a-\frac{\sqrt{13}-1}{2}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{-1-\sqrt{13}}{2} for x_{1} and \frac{-1+\sqrt{13}}{2} for x_{2}.