Verify
true
Share
Copied to clipboard
3-\frac{8\left(-1\right)}{3}-20-\frac{1}{3}=5\left(-\frac{1}{3}\right)-13
Express 8\left(-\frac{1}{3}\right) as a single fraction.
3-\frac{-8}{3}-20-\frac{1}{3}=5\left(-\frac{1}{3}\right)-13
Multiply 8 and -1 to get -8.
3-\left(-\frac{8}{3}\right)-20-\frac{1}{3}=5\left(-\frac{1}{3}\right)-13
Fraction \frac{-8}{3} can be rewritten as -\frac{8}{3} by extracting the negative sign.
3+\frac{8}{3}-20-\frac{1}{3}=5\left(-\frac{1}{3}\right)-13
The opposite of -\frac{8}{3} is \frac{8}{3}.
\frac{9}{3}+\frac{8}{3}-20-\frac{1}{3}=5\left(-\frac{1}{3}\right)-13
Convert 3 to fraction \frac{9}{3}.
\frac{9+8}{3}-20-\frac{1}{3}=5\left(-\frac{1}{3}\right)-13
Since \frac{9}{3} and \frac{8}{3} have the same denominator, add them by adding their numerators.
\frac{17}{3}-20-\frac{1}{3}=5\left(-\frac{1}{3}\right)-13
Add 9 and 8 to get 17.
\frac{17}{3}-\frac{60}{3}-\frac{1}{3}=5\left(-\frac{1}{3}\right)-13
Convert 20 to fraction \frac{60}{3}.
\frac{17-60}{3}-\frac{1}{3}=5\left(-\frac{1}{3}\right)-13
Since \frac{17}{3} and \frac{60}{3} have the same denominator, subtract them by subtracting their numerators.
-\frac{43}{3}-\frac{1}{3}=5\left(-\frac{1}{3}\right)-13
Subtract 60 from 17 to get -43.
\frac{-43-1}{3}=5\left(-\frac{1}{3}\right)-13
Since -\frac{43}{3} and \frac{1}{3} have the same denominator, subtract them by subtracting their numerators.
-\frac{44}{3}=5\left(-\frac{1}{3}\right)-13
Subtract 1 from -43 to get -44.
-\frac{44}{3}=\frac{5\left(-1\right)}{3}-13
Express 5\left(-\frac{1}{3}\right) as a single fraction.
-\frac{44}{3}=\frac{-5}{3}-13
Multiply 5 and -1 to get -5.
-\frac{44}{3}=-\frac{5}{3}-13
Fraction \frac{-5}{3} can be rewritten as -\frac{5}{3} by extracting the negative sign.
-\frac{44}{3}=-\frac{5}{3}-\frac{39}{3}
Convert 13 to fraction \frac{39}{3}.
-\frac{44}{3}=\frac{-5-39}{3}
Since -\frac{5}{3} and \frac{39}{3} have the same denominator, subtract them by subtracting their numerators.
-\frac{44}{3}=-\frac{44}{3}
Subtract 39 from -5 to get -44.
\text{true}
Compare -\frac{44}{3} and -\frac{44}{3}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}