Solve for n
n = \frac{281}{10} = 28\frac{1}{10} = 28.1
Share
Copied to clipboard
3-5n+5=\frac{-265}{2}
Use the distributive property to multiply -5 by n-1.
8-5n=\frac{-265}{2}
Add 3 and 5 to get 8.
8-5n=-\frac{265}{2}
Fraction \frac{-265}{2} can be rewritten as -\frac{265}{2} by extracting the negative sign.
-5n=-\frac{265}{2}-8
Subtract 8 from both sides.
-5n=-\frac{265}{2}-\frac{16}{2}
Convert 8 to fraction \frac{16}{2}.
-5n=\frac{-265-16}{2}
Since -\frac{265}{2} and \frac{16}{2} have the same denominator, subtract them by subtracting their numerators.
-5n=-\frac{281}{2}
Subtract 16 from -265 to get -281.
n=\frac{-\frac{281}{2}}{-5}
Divide both sides by -5.
n=\frac{-281}{2\left(-5\right)}
Express \frac{-\frac{281}{2}}{-5} as a single fraction.
n=\frac{-281}{-10}
Multiply 2 and -5 to get -10.
n=\frac{281}{10}
Fraction \frac{-281}{-10} can be simplified to \frac{281}{10} by removing the negative sign from both the numerator and the denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}