Evaluate
-h
Expand
-h
Share
Copied to clipboard
3-5a-5h+4\left(a+h\right)-\left(3-5a+4a\right)
Use the distributive property to multiply -5 by a+h.
3-5a-5h+4a+4h-\left(3-5a+4a\right)
Use the distributive property to multiply 4 by a+h.
3-a-5h+4h-\left(3-5a+4a\right)
Combine -5a and 4a to get -a.
3-a-h-\left(3-5a+4a\right)
Combine -5h and 4h to get -h.
3-a-h-\left(3-a\right)
Combine -5a and 4a to get -a.
3-a-h-3-\left(-a\right)
To find the opposite of 3-a, find the opposite of each term.
3-a-h-3+a
The opposite of -a is a.
-a-h+a
Subtract 3 from 3 to get 0.
-h
Combine -a and a to get 0.
3-5a-5h+4\left(a+h\right)-\left(3-5a+4a\right)
Use the distributive property to multiply -5 by a+h.
3-5a-5h+4a+4h-\left(3-5a+4a\right)
Use the distributive property to multiply 4 by a+h.
3-a-5h+4h-\left(3-5a+4a\right)
Combine -5a and 4a to get -a.
3-a-h-\left(3-5a+4a\right)
Combine -5h and 4h to get -h.
3-a-h-\left(3-a\right)
Combine -5a and 4a to get -a.
3-a-h-3-\left(-a\right)
To find the opposite of 3-a, find the opposite of each term.
3-a-h-3+a
The opposite of -a is a.
-a-h+a
Subtract 3 from 3 to get 0.
-h
Combine -a and a to get 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}