Solve for u
u<-1
Share
Copied to clipboard
3-2u+2>8+u
Use the distributive property to multiply -2 by u-1.
5-2u>8+u
Add 3 and 2 to get 5.
5-2u-u>8
Subtract u from both sides.
5-3u>8
Combine -2u and -u to get -3u.
-3u>8-5
Subtract 5 from both sides.
-3u>3
Subtract 5 from 8 to get 3.
u<\frac{3}{-3}
Divide both sides by -3. Since -3 is negative, the inequality direction is changed.
u<-1
Divide 3 by -3 to get -1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}