Solve for x
x=2\sqrt{7}-4\approx 1.291502622
x=-2\sqrt{7}-4\approx -9.291502622
Graph
Share
Copied to clipboard
3-\frac{1}{4}x^{2}-x-2=x-2
To find the opposite of \frac{1}{4}x^{2}+x+2, find the opposite of each term.
1-\frac{1}{4}x^{2}-x=x-2
Subtract 2 from 3 to get 1.
1-\frac{1}{4}x^{2}-x-x=-2
Subtract x from both sides.
1-\frac{1}{4}x^{2}-2x=-2
Combine -x and -x to get -2x.
1-\frac{1}{4}x^{2}-2x+2=0
Add 2 to both sides.
3-\frac{1}{4}x^{2}-2x=0
Add 1 and 2 to get 3.
-\frac{1}{4}x^{2}-2x+3=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\left(-\frac{1}{4}\right)\times 3}}{2\left(-\frac{1}{4}\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -\frac{1}{4} for a, -2 for b, and 3 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-2\right)±\sqrt{4-4\left(-\frac{1}{4}\right)\times 3}}{2\left(-\frac{1}{4}\right)}
Square -2.
x=\frac{-\left(-2\right)±\sqrt{4+3}}{2\left(-\frac{1}{4}\right)}
Multiply -4 times -\frac{1}{4}.
x=\frac{-\left(-2\right)±\sqrt{7}}{2\left(-\frac{1}{4}\right)}
Add 4 to 3.
x=\frac{2±\sqrt{7}}{2\left(-\frac{1}{4}\right)}
The opposite of -2 is 2.
x=\frac{2±\sqrt{7}}{-\frac{1}{2}}
Multiply 2 times -\frac{1}{4}.
x=\frac{\sqrt{7}+2}{-\frac{1}{2}}
Now solve the equation x=\frac{2±\sqrt{7}}{-\frac{1}{2}} when ± is plus. Add 2 to \sqrt{7}.
x=-2\sqrt{7}-4
Divide 2+\sqrt{7} by -\frac{1}{2} by multiplying 2+\sqrt{7} by the reciprocal of -\frac{1}{2}.
x=\frac{2-\sqrt{7}}{-\frac{1}{2}}
Now solve the equation x=\frac{2±\sqrt{7}}{-\frac{1}{2}} when ± is minus. Subtract \sqrt{7} from 2.
x=2\sqrt{7}-4
Divide 2-\sqrt{7} by -\frac{1}{2} by multiplying 2-\sqrt{7} by the reciprocal of -\frac{1}{2}.
x=-2\sqrt{7}-4 x=2\sqrt{7}-4
The equation is now solved.
3-\frac{1}{4}x^{2}-x-2=x-2
To find the opposite of \frac{1}{4}x^{2}+x+2, find the opposite of each term.
1-\frac{1}{4}x^{2}-x=x-2
Subtract 2 from 3 to get 1.
1-\frac{1}{4}x^{2}-x-x=-2
Subtract x from both sides.
1-\frac{1}{4}x^{2}-2x=-2
Combine -x and -x to get -2x.
-\frac{1}{4}x^{2}-2x=-2-1
Subtract 1 from both sides.
-\frac{1}{4}x^{2}-2x=-3
Subtract 1 from -2 to get -3.
\frac{-\frac{1}{4}x^{2}-2x}{-\frac{1}{4}}=-\frac{3}{-\frac{1}{4}}
Multiply both sides by -4.
x^{2}+\left(-\frac{2}{-\frac{1}{4}}\right)x=-\frac{3}{-\frac{1}{4}}
Dividing by -\frac{1}{4} undoes the multiplication by -\frac{1}{4}.
x^{2}+8x=-\frac{3}{-\frac{1}{4}}
Divide -2 by -\frac{1}{4} by multiplying -2 by the reciprocal of -\frac{1}{4}.
x^{2}+8x=12
Divide -3 by -\frac{1}{4} by multiplying -3 by the reciprocal of -\frac{1}{4}.
x^{2}+8x+4^{2}=12+4^{2}
Divide 8, the coefficient of the x term, by 2 to get 4. Then add the square of 4 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+8x+16=12+16
Square 4.
x^{2}+8x+16=28
Add 12 to 16.
\left(x+4\right)^{2}=28
Factor x^{2}+8x+16. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+4\right)^{2}}=\sqrt{28}
Take the square root of both sides of the equation.
x+4=2\sqrt{7} x+4=-2\sqrt{7}
Simplify.
x=2\sqrt{7}-4 x=-2\sqrt{7}-4
Subtract 4 from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}