Evaluate
-\frac{22}{9}\approx -2.444444444
Factor
-\frac{22}{9} = -2\frac{4}{9} = -2.4444444444444446
Share
Copied to clipboard
3-|\frac{5}{3}+\frac{4}{\frac{8}{4}+\frac{1}{4}}+2|
Convert 2 to fraction \frac{8}{4}.
3-|\frac{5}{3}+\frac{4}{\frac{8+1}{4}}+2|
Since \frac{8}{4} and \frac{1}{4} have the same denominator, add them by adding their numerators.
3-|\frac{5}{3}+\frac{4}{\frac{9}{4}}+2|
Add 8 and 1 to get 9.
3-|\frac{5}{3}+4\times \frac{4}{9}+2|
Divide 4 by \frac{9}{4} by multiplying 4 by the reciprocal of \frac{9}{4}.
3-|\frac{5}{3}+\frac{4\times 4}{9}+2|
Express 4\times \frac{4}{9} as a single fraction.
3-|\frac{5}{3}+\frac{16}{9}+2|
Multiply 4 and 4 to get 16.
3-|\frac{15}{9}+\frac{16}{9}+2|
Least common multiple of 3 and 9 is 9. Convert \frac{5}{3} and \frac{16}{9} to fractions with denominator 9.
3-|\frac{15+16}{9}+2|
Since \frac{15}{9} and \frac{16}{9} have the same denominator, add them by adding their numerators.
3-|\frac{31}{9}+2|
Add 15 and 16 to get 31.
3-|\frac{31}{9}+\frac{18}{9}|
Convert 2 to fraction \frac{18}{9}.
3-|\frac{31+18}{9}|
Since \frac{31}{9} and \frac{18}{9} have the same denominator, add them by adding their numerators.
3-|\frac{49}{9}|
Add 31 and 18 to get 49.
3-\frac{49}{9}
The absolute value of a real number a is a when a\geq 0, or -a when a<0. The absolute value of \frac{49}{9} is \frac{49}{9}.
\frac{27}{9}-\frac{49}{9}
Convert 3 to fraction \frac{27}{9}.
\frac{27-49}{9}
Since \frac{27}{9} and \frac{49}{9} have the same denominator, subtract them by subtracting their numerators.
-\frac{22}{9}
Subtract 49 from 27 to get -22.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}